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Introduction

e Recall that the state response of an LTI system
consists of two parts:

t

X(t)=e*"x, + f e Bu(t)dt
lo
) .

H_I — >
zero-input response: (1) Xzs(t): zero-state response

¥(t)=Ce* %, + [ Ce* ™ Bu(r)d + Du(?)

H_I N— —_—— —
zero-input output: y,(t) y,<(t): zero-state output

e Stability analysis has two corresponding aspects:

— Internal stability: Whether x,.(t) stays bounded

— Bounded-inputbounded stability: Whethery,(t) stays
bounded for a bounded input



Whether the zero-input state response stays bounded

INTERNAL STABILITY



Internal Stability

Here, we assume u(t) = 0 and focus on the
system’s behaviour on its own

The fundamental equation is

x(t) = Ax (1) x(0) = xg
Or for a nonlinear system

x(t) = flx()] x(0) = xo

An equilibrium state X is a particular state
vector at which the derivative equals 0



* Depicted below are equilibrium states a, b and c:

— ais unstable: even a tiny movement will move the
state away from equilibrium

— b is stable: a small movement will move the state a
small distance

— cis asymptotically stable: a small movement will
move the state, but it will eventually return to the
original point.
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Stable and Unstable

Definition 6.1 The equilibrium state x = 0 of Equation (6.2) is

. - if, given any & > 0 there corresponds a 6 > 0 such that ||xg]|
< 6 implies that ||x(t)|| < € for all t > 0.

. -zf it is not stable.




Asymptotically Stable
- ASyhipiotically’stablel if i: is stable and it is possible to choose § > 0

such that ||xo|| < & implies that lim;_,  ||x(¢)|| = 0. Specifically, given
any & > 0, there exists T > 0 for which the corresponding trajectory
satisfies ||x(t)|| < e forall t > T.

o Globally asymptotically stable if it is stable and lim,_, o ||x(¢)|| = 0
for any initial state. Specifically, given any M > 0 and ¢ > 0, there
exists T > 0 such that ||xo|| < M implies that the corresponding tra-
jectory satisfies ||x(t)|| < e forall t > T.

e




Assumptions

* Ifu(t) =0andt, =0, the state response is

x(t) = e™x,
* We will assume the following (each statement
implies the others):
— A has n linearly independent eigenvectors
— A has n distinct eigenvalues
— A can be diagonalized

A=VDV~



* We expand the definition of the matrix
exponential to incorporate VDV! in place of A:

Using

At

A=VDV~! A = v DFy 1

A%t2 A3
I+ At+ ——+ —;
VD2V—42 VD3V 13
VV i+ VvDVTt 4 o - 3 -
D?t? D33
V(I+Dt+ TR +--->V—1

Velty—1



What does ePt look like? eMt 0 ... 0
0 et 0
oDt _ |
0 0 e?nt

We can use this to re-write x(t)

r(t) = etlxg

— VGDtV_lilf()
V, V-1, and x, are constant matrices and vectors.

Therefore each row of x(t) is just some linear
combination of terms involving the diagonals of ePt

zi(t) = ae™’ + be*?t + - ..




i (t) = ae™? + be?t 4 ...

* The exact state response requires all these constants
(3, b, ...) to be known, but for stability analysis we
just want to know if the expression will grow without
bound

* Clearly, if the eigenvaluesof A (A, \,, ...) are real
numbers then we just have a sum of pure
exponentials

— Ifany A, > 0 then the system is unstable
— Ifall A, < 0 then the system is asymptotically stable

— If n—1 eigenvalues are negative, and just one eigenvalue is zero then
the system is stable, but not asymptotically stable



Complex Eigenvalues

The eigenvalues of A will often be complex,
even if A is purely real

ConsidereMandletA=a+ib

At __ e(a—I—zb)t atezbt

€ — €

= e (cos bt + i sin bt)

At ‘ at

e = e

This magnitude decays for a < 0, stays constant
for a =0, and grows (explodes!) fora>0

Hence, for stability all we care about is Re{A}



The Eigenvalue Test for Internal Stability

* |f our assumption of n distinct eigenvalues holds, then
we have the following eigenvalue test for internal
stability:

— The system isstable if all eigenvalues have a non-positive
real part

* If one eigenvalue is zero then there is a constant non-decaying term
* Otherwise, if all eigenvalues are strictly negative we have

— If any eigenvalue has a positive real part then the system is
unstable

 The same holds for repeated eigenvalues, except for
repeated eigenvalues with zero real part. In this case a
more sophisticated test is required (out of our scope).



Connection between Poles and
Eigenvalues

* The poles of a system’s transfer function
will be eigenvalues of A

— Caveat: Its possible that some of the
eigenvalues of A will not be poles of the
transfer function due to pole-zero
cancellation.

* (We’ll see an example of this later)



* Let H(s) be a general 2" order transfer function

b 1 —a::\/a2—4b
oles:
s24+as—+b P 2

H(s) =

* The corresponding A matrix

0 1
A5 2
 Lets work out its eigenvalues The Characteristic
Polynomial
det (A—XI) = O
—A 1
det([—b _a_)\]> /
M4al+b = 0
y —a+ Va2 — 4b




Energy-Based Analysis

Recall that state variables are always associated with
energy storage elements

A stable system will dissipate or maintain energy

— If the system’s energy always dissipates down to O theniit is
asymptotically stable

If the energy in the system actually increases (without
any applied input) then the system is unstable

Consider the following simple
mechanical system...

—— y(7)
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}—»y(t) — —_
" 0 1
A= k C
. mo ) .
1 . . m m

* The state variable x,(t) represents the displacement
of the mass. The system stores energy in two ways:
— Potential energy in the spring: % k x;?
— Kinetic energy in the moving mass: %2 m x,?

— Total energy:

1 2 1 2
E(Xl, Xz) = Ekxl + mez

 Work out the derivative of E with respect to time...



}—» y(®)

—\WWH 0 1 1 1
c mo =) A= k C E(xy, x) = —kxl2 + —mx%
1] - —— 2 2
@) @) . m m |

dt dt | 2
= kx1(8)x1(t) + mxy(t)x2(1)

d df1 , 1
—E[x1(#), x2(t)] = — [—kxl (7)) + ~mnx; (t)]

k
= kx1 (1) [xz(f)} + mx, (1) [——Xl(t) — iJCz(t)]

m m

= —cx%(t)

e Lets try adjusting the damping coefficient, c



}—» y(®)

m —= A1)

=1

e Zero damping: c=0

A =

L
E(x1, xp) = Ek)c1 + mez

Elx;(t), x2(t)] = —cx5(t)

— dE/dt =0 which means that the total energy is constant

— Energy goes back and forth between the moving mass and
the spring, butis neverlost (or gained)

— M, N, =%j3.16 (form=1kg, k=10 N/m)

— The system oscillates sinusoidally

— The system is stable, but not asymptotically stable



“Phase portrait”:
Shows system
trajectory in
state space
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(@) State-variable responses; (b) phase portrait; (c) energy response

FIGURE 6.4

for a marginally-stable equilibrium.



}—»y(t) 1
k " ) { - E(x1, xp) = ik)cl2 + mezz
) mo 0 A= k C . X
— T T E[x1(2), x2(t)] = —cx5(¢)

* Positive damping: c=1
— dE/dt < 0 which means that energy strictly decreases
— N, M, =-0.5%j3.12
— Asymptotically stable:

» State response is an exponentially decaying sinusoid



Convergence to
[0, O], hence

asymptotically

stable
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(@) State-variable responses; (b) phase portrait; (c) energy response

for an asymptotically-stable equilibrium.

FIGURE 6.5



}—» y(®)

m —= A1)

=1

* Negative damping: c=-1

A =

L
E(x1, xp) = Ek)c1 + mez

Elx;(t), x2(t)] = —cx5(t)

— Not clear what this means physically: A powered

damper?

— dE/dt >0 which means that energy strictly increases
— N, M, =0.5%j3.12

— Unstable:

e State response is an exponentially growing sinusoid



This unstable
system is on its
way to some
sort of break
down!
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(@) State-variable responses; (b) phase portrait; (c) energy response

for an unstable equilibrium.

FIGURE 6.6



BOUNDED-INPUT BOUNDED-
OUTPUT STABILITY



Bounded-Input Bounded-Output
(BIBO) Stability

* Recall that the output of an LTI system consists of
two parts:

y(1)=Ce*x, + [ : Ce* " Bu(r)dt + Du(?)

H_l s —_—— —
zero-input output: y.,(t) y,<(t): zero-state output

* BIBO stability concerns vy, (t)

* As you have seen BIBO stability in other courses we
will be brief:

— A system is BIBO stableif its impulse response has a finite
sum



Test for BIBO Stability

Theorem 6.6 The linear state equation (6.1) is bounded-input, bounded-

output stable if and only if the impulse response matrix H(t) = Ce' B+
Dé(t) satisfies

/OO |H(7)|ldt < o0
0

* This means that H(t) is absolutely integrable
* There is a strong relationship between internal
stability and BIBO stability (both involve e”t)
e If a system is asymptotically stable, it is BIBO
stable
* However, the opposite is not necessarily true...



Example 6.3 Consider the following two-dimensional state equation:
x1@) | [0 1 [fx() —1
i) =[1 o] [a [+ 1o
y(t) = [0 1][’“(”}

xo(1)

The characteristic polynomial 1s

s —1

|S1—A|:‘_1 ¢

=57 —1

=6+ DG -1 )L1,2=—1,—|—1

Not asymptotically stable... In fact, unstable!

w_| 2@t @
‘ N 1 t —t 1 t —t
_5(6 —e™') 5(6 + e )_




H(s)=C(sI — A 'B
T s 117 =1
RN
[ s 1}
1 _
o]

s2—1 1
B s — 1
TG+ DGs =1
Pole-Zero

1 .

— Cancellation
(s+1)
h(t) =e ', t >0

0
Satisfies the test for BIBO stability: f \h(t)|ldTt =1
0

So the system is unstable, but BIBO stable? Why? /

Lesson: Don’t cancel poles and zeros when testing for stability



