

ENGI 7825: Control Systems II The State-Space Representation: Part 4: Linearization

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

Linear Differential Equations

- For a differential equationto be linear, it must be possible to form linear combinations of solutions which are also solutions. This is the case for any DE of the following form:

$$
a_{n} x^{(n)}(t)+a_{n-1} x^{(n-1)}(t)+\cdots+a_{0} x(t)=u(t)
$$

- The key point is that we have nothing but derivatives multiplied by constant coefficients on the left.
- The SS representation can represent multiple linear DE's together.

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t) & =\mathbf{C x}(t)+\mathbf{D u}(t) \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
\end{aligned}
$$

- Our ability to describe the system in SS form implies a linear system.

Linearity

- A function, f , is linearif it exhibits the following properties: - Additivity: $\mathrm{f}(\mathrm{p}+\mathrm{q})=\mathrm{f}(\mathrm{p})+\mathrm{f}(\mathrm{q})$
- Also known as the superposition principle
- Homogeneity: $\mathrm{f}(\mathrm{ap})=\alpha \mathrm{f}(\mathrm{p})$
- Consider the function $\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b}$:
- Additivity?
$-f(p)=m p+b$
$-f(q)=m q+b$
$-f(p+q)=m(p+q)+b=m p+m q+b$
- This is not equal to $f(p)+f(q)$!
- So the equation for a straight line is not linear!! Although it would be linear if $b=0$.

Linearization of nonlinear systems

- The SS representation for a nonlinear time-varying system is as follows:

$$
\begin{aligned}
\dot{x}(t) & =f[x(t), u(t), t] \\
y(t) & =h[x(t), u(t), t]
\end{aligned} \quad x\left(t_{0}\right)=x_{0}
$$

- A system is nonlinearif it cannot be written in the standard SS form.
- There exist techniques to solve some nonlinear state equations, but they will not be studied in this course.
- We will use a first-order Taylor series expansion to linearize such a system about a particular operating point.

Taylor series expansion (review)

The Taylor series expansion gives the value of a function, f, at t from its value at a and its derivatives evaluated at a :

$$
f(t)=f(a)+\frac{f^{\prime}(a)}{1!}(t-a)+\frac{f^{\prime \prime}(a)}{2!}(t-a)^{2}+\frac{f^{(3)}(a)}{3!}(t-a)^{3}+\cdots
$$

The higher-order terms are typically small, so we often make a first-order approximation by eliminating them:

$$
f(t) \approx f(a)+\frac{f^{\prime}(a)}{1!}(t-a)
$$

The point a is called the operating point and $f(a)$ is the nominal value.

1D Example

- Find a linear approximation for the function $f(t)=t^{2}$ at the operating point $\mathrm{t}=1$
- COVERED ON BOARD
- The resulting function, $2 \mathrm{t}-1$, is not linear!
- However, we can define a new deviation variable $f_{\delta}(t)$ with respect to the nominal value of thefunction at $t=1$

$$
\begin{aligned}
f_{\delta}(t) & =f(t)-f_{n}(t) \\
& =(2 t-1)-(1) \\
& =2 t-2
\end{aligned}
$$

- This is still not linear, but we can make it linear by defining a new time variable, t_{δ} defined as $\mathrm{t}_{\bar{\delta}}=\mathrm{t}-1$. When we substitute for $t=t_{\delta}+1$ we get,

$$
f_{\delta}\left(t_{\delta}\right)=2\left(t_{\delta}+1\right)-2=2 t_{\delta}
$$

Linearization of nonlinear systems

- Nonlinear, time-varying systems can be represented by state equations:
where \mathbf{f} and \mathbf{h} are continuously differentiable functions. Linearization is obtained as follows:
- Assume that the system operates along some nominal trajectory $\mathrm{x}_{\mathrm{n}}(\mathrm{t})$ while it is driven by the system input $\mathrm{u}_{\mathrm{n}}(\mathrm{t})$. These are called the nominal state trajectory and the nominal input trajectory, respectively.

$$
\begin{aligned}
& \dot{\mathbf{x}}_{n}(t)=\mathbf{f}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right] \\
& \mathbf{y}_{n}(t)=\mathbf{h}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]
\end{aligned}
$$

- Expanding the nonlinear functions in a multivariate first-order Taylor series expansion about $\left[\mathrm{x}_{\mathrm{n}}(\mathrm{t}), \mathrm{u}_{\mathrm{n}}(\mathrm{t}), \mathrm{t}\right]$ we obtain:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t) \approx \mathbf{f}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]+\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{f}}{\partial \mathbf{f}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right] \\
& \mathbf{y}(t) \approx \mathbf{h}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]+\frac{\partial \mathbf{h}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{h}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]
\end{aligned}
$$

$\dot{\mathbf{x}}(t) \approx \mathbf{f}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]+\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]$
 $\mathbf{y}(t) \approx \mathbf{h}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]+\frac{\partial \mathbf{h}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{h}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]$

- This is exactly the same as our 2-variable example, except the variables that we differentiate by are now vectors, and the corresponding derivatives are matrices!
- Lets say we have a function $f(\mathbf{v})$ where \mathbf{v} is a vector. The derivative of \mathbf{f} is called the Jacobian matrix and is defined as follows if the output of \mathbf{f} is 2-dimensional and \mathbf{v} is 3-dimensional.

$$
\frac{\partial \mathbf{f}}{\partial \mathbf{v}}=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial v_{1}} & \frac{\partial f_{1}}{\partial v_{2}} & \frac{\partial f_{1}}{\partial v_{3}} \\
\frac{\partial f_{2}}{\partial v_{1}} & \frac{\partial f_{2}}{\partial v_{2}} & \frac{\partial f_{2}}{\partial v_{3}}
\end{array}\right]
$$

- In general, lets say that \mathbf{f} is m -dimensional and \mathbf{v} is n -dimensional.

$$
\frac{\partial \mathbf{f}}{\partial \mathbf{v}}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial v_{1}} & \cdots & \frac{\partial f_{1}}{\partial v_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial v_{1}} & \cdots & \frac{\partial f_{m}}{\partial v_{n}}
\end{array}\right]
$$

```
\dot{\mathbf{x}}(t)\approx\mathbf{f}[\mp@subsup{\mathbf{x}}{n}{}(t),\mathbf{u}
y}(t)\approx\mathbf{h}[\mp@subsup{\mathbf{x}}{n}{}(t),\mp@subsup{\mathbf{u}}{n}{}(t),t]+\frac{\partial\mathbf{h}}{\partial\mathbf{X}}[\mp@subsup{\mathbf{x}}{n}{}(t),\mp@subsup{\mathbf{u}}{n}{}(t),t][\mathbf{x}(t)-\mp@subsup{\mathbf{x}}{n}{}(t)]+\frac{\partial\mathbf{h}}{\partial\mathbf{u}}[\mp@subsup{\mathbf{x}}{n}{}(t),\mp@subsup{\mathbf{u}}{n}{}(t),t][\mathbf{u}(t)-\mp@subsup{\mathbf{u}}{n}{}(t)
```

- We can define the following deviation variables:

$$
\mathbf{x}_{\delta}(t)=\mathbf{x}(t)-\mathbf{x}_{n}(t) \quad \mathbf{u}_{\delta}(t)=\mathbf{u}(t)-\mathbf{u}_{n}(t) \quad \mathbf{y}_{\delta}(t)=\mathbf{y}(t)-\mathbf{y}_{n}(t)
$$

- Now we rearrange our big equation to use these:
$\dot{\mathbf{x}}(t)-\mathbf{f}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]=\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]$
$\mathbf{y}(t)-\mathbf{h}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]=\frac{\partial \mathbf{h}}{\partial}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{h}}{2}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]$
$\mathbf{y}(t)-\mathbf{h}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{h}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]$
$\dot{\mathbf{x}}(t)-\dot{\mathbf{x}}_{n}(t)=\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\left[\mathbf{x}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]$
$\mathbf{y}(t)-\mathbf{y}_{n}(t)=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{h}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]$

$$
\begin{aligned}
& \dot{\mathbf{x}}_{\delta}(t)=\dot{\mathbf{x}}(t)-\dot{\mathbf{x}}_{n}(t) \approx \mathbf{A}(t) \mathbf{x}_{\delta}(t)+\mathbf{B}(t) \mathbf{u}_{\delta}(t) \\
& \mathbf{y}_{\delta}(t)=\mathbf{y}(t)-\mathbf{y}_{n}(t) \approx \mathbf{C}(t) \mathbf{x}_{\delta}(t)+\mathbf{D}(t) \mathbf{u}_{\delta}(t)
\end{aligned}
$$

Linearization Example

- The motion of a pendulum on a taut string of length L is described by the following:
$m L^{2} \ddot{\theta}(t)+m g L \sin (\theta(t))=T(t)$
- The use of $\sin (\theta)$ makes this equation non-linear. We will linearize, but we first need to define our state variables. Assuming that $\theta(\mathrm{t})$ is theoutput:

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\theta(t) \\
\dot{\theta}(t)
\end{array}\right]
$$

$\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}\theta(t) \\ \dot{\theta}(t)\end{array}\right] \quad m L^{2} \ddot{\theta}(t)+m g L \sin (\theta(t))=T(t)$

- Lets try and write in SS form and see how far we get:

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t) & =-\frac{g}{L} \sin (\theta(t))+\frac{1}{m L^{2}} T(t)
\end{aligned}
$$

- Non-linear! But lets keepgoing with the output equation:

$$
y(t)=\theta(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- The output equation is linear, sowe only need to linearize the state equation
$\dot{\mathbf{x}}(t)=\mathbf{f}[\mathbf{x}(t) \mathbf{u}(t), t]$

- We will choose to linearize about a nominal input of $u_{n}(t)=0$ and $x_{n}(t)$ $=0$. So our approximation will be good only around the stable equilibrium position (i.e. when θ is small). Here is the first-order Taylor expansion again, defined w.r.t. $\mathrm{x}_{\mathrm{n}}(\mathrm{t})$.

$$
\dot{\mathbf{x}}(t)-\dot{\mathbf{x}}_{n}(t)=\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{x}(t)-\mathbf{x}_{n}(t)\right]+\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\left[\mathbf{x}_{n}(t), \mathbf{u}_{n}(t), t\right]\left[\mathbf{u}(t)-\mathbf{u}_{n}(t)\right]
$$

- Since the nominal input and value are zero, we have:

$$
\dot{\mathbf{x}}(t)=\frac{\partial \mathbf{f}}{\partial \mathbf{x}}[0,0, t][\mathbf{x}(t)]+\frac{\partial \mathbf{f}}{\partial \mathbf{u}}[0,0, t][\mathbf{u}(t)]
$$

$\frac{\partial \mathbf{f}}{\partial \mathbf{x}}(0,0, t)=\left[\begin{array}{cc}\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -\frac{g}{L} & 0\end{array}\right] \quad \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(0,0, t)=\left[\begin{array}{c}\frac{\partial f_{1}}{\partial u^{t}} \\ \frac{\partial f_{2}}{\partial u}\end{array}\right]=\left[\begin{array}{c}0 \\ \frac{1}{m L^{2}}\end{array}\right]$

- Finally, the linearized state equation!

$$
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{L} & 0
\end{array}\right] x(t)+\left[\begin{array}{c}
0 \\
\frac{1}{m L^{2}}
\end{array}\right] u(t)
$$

