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The State-Space Representation: 
Part 4: Linearization



Linearity
► A function, f, is linear if it exhibits the following properties:

■ Additivity: f(p + q) = f(p) + f(q)

► Also known as the superposition principle
■ Homogeneity: f(αp) = α f(p)

► Consider the function f(x) = mx + b:
■ Additivity? 

► f(p) = mp + b
► f(q) = mq + b
► f(p + q) = m(p + q) + b = mp + mq + b
► This is not equal to f(p) + f(q)!
► So the equation for a straight line is not linear!!  

Although it would be linear if b = 0.



Linear Differential Equations
► For a differential equation to be linear, it must be possible 

to form linear combinations of solutions which are also 
solutions.  This is the case for any DE of the following 
form:

► The key point is that we have nothing but derivatives 
multiplied by constant coefficients on the left.

► The SS representation can represent multiple linear DE’s 
together.

► Our ability to describe the system in SS form implies a 
linear system.

x(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)        x(t0 ) = x0



Linearization of nonlinear systems
► The SS representation for a nonlinear time-varying 

system is as follows:

► A system is nonlinear if it cannot be written in the 
standard SS form.

► There exist techniques to solve some nonlinear state 
equations, but they will not be studied in this course.

► We will use a first-order Taylor series expansion to 
linearize such a system about a particular operating 
point.
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nonlinear, time-varying state equation

ẋ(t) = f [x(t), u(t), t]
y(t) = h[x(t), u(t), t] x(t0) = x0 (1.4)

where x(t), u(t), and y(t) retain their default vector dimensions and
f (·, ·, ·) and h(·, ·, ·) are continuously differentiable functions of their
(n + m + 1)-dimensional arguments. Linearization is performed about a
nominal trajectory defined as follows.

Definition 1.1 For a nominal input signal, ũ(t), the nominal state tra-
jectory x̃(t) satisfies

˙̃x(t) = f [x̃(t), ũ(t), t]

and the nominal output trajectory ỹ(t) satisfies

ỹ(t) = h[x̃(t), ũ(t), t]

If ũ(t) = ũ, a constant vector, a special case is an equilibrium state x̃
that satisfies

0 = f (x̃, ũ, t)

for all t. !

Deviations of the state, input, and output from their nominal trajectories
are denoted by δ subscripts via

xδ(t) = x(t) − x̃(t)

uδ(t) = u(t) − ũ(t)

yδ(t) = y(t) − ỹ(t)

Using the compact notation
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Taylor series expansion (review)

The Taylor series expansion gives the value of a function, f, 
at t from its value at a and its derivatives evaluated at a:

The higher-order terms are typically small, so we often make a 
first-order approximation by eliminating them:

The point a is called the operating point and f(a) is the 
nominal value.



1D Example
► Find a linear approximation for the function f(t) = t2 at the 

operating point t = 1
■ COVERED ON BOARD

► The resulting function, 2t – 1, is not linear!
► However, we can define a new deviation variable fδ(t) 

with respect to the nominal value of the function at t = 1

► This is still not linear, but we can make it linear by 
defining a new time variable, tδ defined as tδ = t – 1.  
When we substitute for t = tδ + 1 we get,



2D Example
► Linear approximation for a two variable function f(x, y)

■ A linear approximation for f(x,y) about (a,b), is obtained with a 
first-order multivariate Taylor series expansion

Example: Find the linearization of f(x,y)=x2+y2 about point (1,2)

f (x, y) ≈ f (a,b)+ ∂f
∂x (a,b)

(x − a)+ ∂f
∂y (a,b)

(y− b)
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Linearization of nonlinear systems
► Nonlinear, time-varying systems can be represented by state 

equations:

where f and h are continuously differentiable functions. Linearization is 
obtained as follows:

■ Assume that the system operates along some nominal trajectory  
xn(t) while it is driven by the system input un(t).  These are called 
the nominal state trajectory and the nominal input trajectory, 
respectively.

■ Expanding the nonlinear functions in a multivariate first-order Taylor 
series expansion about [xn(t), un(t),t] we obtain:

€ 

˙ x (t) = f x(t),u(t),t[ ]
y(t) = h x(t),u(t),t[ ]        x(t0) = x0

€ 

˙ x n(t) = f xn(t),un(t),t[ ]
yn(t) = h xn(t),un(t),t[ ]

€ 

˙ x (t) ≈ f xn(t),un(t),t[ ] +
∂f
∂x

xn (t),un (t), t[ ]  x(t) − xn (t)[ ] +
∂f
∂u

xn (t),un (t),t[ ]  u(t) −un (t)[ ]

y(t) ≈ h xn(t),un(t),t[ ] +
∂h
∂x

xn (t),un (t), t[ ]  x(t) − xn (t)[ ] +
∂h
∂u

xn (t),un (t),t[ ]  u(t) −un (t)[ ]



► This is exactly the same as our 2-variable example, except the 
variables that we differentiate by are now vectors, and the 
corresponding derivatives are matrices!

► Lets say we have a function f(v) where v is a vector.  The derivative of 
f is called the Jacobian matrix and is defined as follows if the output of 
f is 2-dimensional and v is 3-dimensional.

► In general, lets say that f is m-dimensional and v is n-dimensional.

x(t) ≈ f xn (t),un (t), t[ ]+ ∂f
∂x
xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂f

∂u
xn (t),un (t), t[ ] u(t)−un (t)[ ]

y(t) ≈ h xn (t),un (t), t[ ]+ ∂h
∂x

xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂h
∂u

xn (t),un (t), t[ ] u(t)−un (t)[ ]
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x(t) ≈ f xn (t),un (t), t[ ]+ ∂f
∂x
xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂f

∂u
xn (t),un (t), t[ ] u(t)−un (t)[ ]

y(t) ≈ h xn (t),un (t), t[ ]+ ∂h
∂x

xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂h
∂u

xn (t),un (t), t[ ] u(t)−un (t)[ ]

► We can define the following deviation variables:

► Now we rearrange our big equation to use these:

x(t)− f xn (t),un (t), t[ ] = ∂f
∂x
xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂f

∂u
xn (t),un (t), t[ ] u(t)−un (t)[ ]

y(t)−h xn (t),un (t), t[ ] = ∂h
∂x

xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂h
∂u

xn (t),un (t), t[ ] u(t)−un (t)[ ]

x(t)− xn (t) =
∂f
∂x
x (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂f

∂u
xn (t),un (t), t[ ] u(t)−un (t)[ ]

y(t)− yn (t) =
∂h
∂x

xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂h
∂u

xn (t),un (t), t[ ] u(t)−un (t)[ ]



► In many cases the non-linear functions, f and h, will be 
time-invariant

► In this case, the matrices A, B, C, and D will be constant 
and the linearized system will be LTI.

► Another potential simplification occurs if the nominal 
trajectory just represents a constant equilibrium condition 
xn(t)=xn for a constant nominal input un(t)=un.  In this 
case, the derivative is zero:

€ 

˙ x (t) = f x(t),u(t)[ ]
y(t) = h x(t),u(t)[ ]

€ 

0 = f xn,un[ ]
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Linearization Example
► The motion of a pendulum on a 

taut string of length L is 
described by the following:

► The use of sin(θ) makes this 
equation non-linear.  We will 
linearize, but we first need to 
define our state variables.  
Assuming that θ(t) is the output:

Lθ(t)

T(t)

Input
Torque



► Lets try and write in SS form and see how far we get:

► Non-linear!  But lets keep going with the output 
equation:

► The output equation is linear, so we only need to 
linearize the state equation



► We will choose to linearize about a nominal input of un(t) = 0 and xn(t) 
= 0.  So our approximation will be good only around the stable 
equilibrium position (i.e. when θ is small).  Here is the first-order 
Taylor expansion again, defined w.r.t. xn(t):

► Since the nominal input and value are zero, we have:

► Finally, the linearized state equation!

x(t)− xn (t) =
∂f
∂x
xn (t),un (t), t[ ] x(t)− xn (t)[ ]+ ∂f

∂u
xn (t),un (t), t[ ] u(t)−un (t)[ ]

x(t) = ∂f
∂x

0, 0, t[ ] x(t)[ ]+ ∂f
∂u

0, 0, t[ ] u(t)[ ]

€ 

˙ x (t) = f x(t),u(t),t[ ]
y(t) = h x(t),u(t),t[ ]        x(t0) = x0


