ENGI 7825: Control Systems Il

The State-Space Representation:
Part 1

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

What to Expect

» Math-heavy, implementation-light

= Background: Linear algebra, differential equations, stuff from 5821

» Assignments: Mostly paper and pen, some Matlab
» Practical Assignments: Using V-REP robot simulator

= The purpose is to motivate the techniques discussed and illustrate
how they might be useful. Example problems drawn from mobile
robotics.

» Mid-term tests and final: Based on core material presented

in class and practiced on the assignments

» Note: This course is not a hands-on introduction to

industrial controls. It focusesinstead on control systems
theory.
= (But remember that theory is the stuff that is harder to learn after
graduating)

Why a Second Controls Course?

» Classical control techniques (ENGI 5821) only applicable
to single-input, single-output (SISO) systems:
= A heating system for one room
= Orientation of a single joint on a robot
» Many real-world systems have multiple inputs and
multiple outputs (MIMO)

» A heating system for two rooms that accounts for heat transfer
between them:

» Input/Output: 2 temperatures
= Simple two-wheeled mobile robot:
» Input: 2 wheel speeds
» Output: translational and rotational velocity
» Also, classical control techniques are usually based on
the assumption of zero initial conditions; Lets review...

Classical Control

» The classical (i.e. frequency-domain) approach:

converting a system’ s differential equation to a
transfer function,thus generating a
mathematical model of the system that relates
the input to the output

» e.g. RLC circuit with v(t) as input and v(t) as

output
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We need to relate the input v(t) to the output, v.(t); Replace i(t):

d’ vc ) dvc @)

LC—5—=+RC———=+v.(t)=v(t)

» Apply Laplace Transform using the following theorems:

Theorem

L{%} = sF(s) — £(0-)

L{%} = 2F(s) — sf(0—) — f/(0—)
L{GEY = s"F(s) = Y p_y s kFk=D(0-)

» If the initial conditions are all zero then we get

[LCs?V (5)+RCsV (9)+V..(5) = V(s)|

» If the initial conditions are non-zero we get

LCs*V,(s)+RCsV,.(s)+V,.(s)— LCsv,(0)— LCv .(0)— RCv,(0) =V (s)

dv.(t)
C—=
i(t)= o
dv.(t) d? ve(t)
RC——= & +LC —5— e +v.(t)=v(t)
1cdve® Rcdvc(’) v (D) =v(1)
» Zero initial conditions:
Vo) VLC
LCS*V, (s)+RCSV o (5)+V(5) = V()| =) v SR T
L __IC

» This is a transfer function (output / input)

» With non-zero initial conditions, there is no way to get a
transfer function:

LCs*V,(s)+RCsV,.(s)+V,.(s)— LCsv,(0)— LCv .(0)— RCv,(0) =V (s)

= (LW,

V(s)

Advantages of State-Space Controls

» State-Space Controls is a method for modeling,
analyzing and designing a wide range of
systems,such as:

= Nonzero initial condition systems
» Classical restricted to zero initial conditions

= Multiple-input, multiple-output systems (MIMO)

» Classical restricted to single-input, single-output system
(SISO)

» State-space has other advantages that we will
see later on. For example:

= Natural representation for nonlinear systems, time-
varying systems (variable mass systems, ...)




System State

» The state of a systemis the information needed in
addition to the input to determine the output
» Amemoryless system’s output is determined solely by
the input
= €.g. A single resistor with voltage as input and current as output
» The output of a causal system depends on past and
current inputs. The impact of past inputs is represented
by the state.
= All physically realized systems are causal
» The output of a non-causal system depends on past,
current, and future inputs! No real-world physical
systems have this ability to anticipate future inputs

» Non-causal systems can be simulated and non-causal filtering
can be applied on previously collected data

Notation

» We would like to describe general MIMO systems, so the
inputs, outputs, and states will all be vectors
» input vector: u(t)
= Assume we have control over the input
» output vector: y(t)
= The output is any single variable or multiple variables that we can
measure
» state vector: x(t)

= Other variables representing the state of the system (may or may
not be measureable)

State-Space Representation

» The state-space representation for an LTI system has the general
form:

X(?) = Ax(1) + Bu(?)
¥(t) = Cx(?) + Du(?) X(1,) =X,

—
Initial conditions
where:
x(t): state vector (n-dimensional)
y(t): output vector (p-dim)
u(®): input or control vector (m-dim)
A: dynamic matix (? x ?) ult)
B: input matrix (? x ?)
C: output matrix (? x ?)
D: feedforward (direct) matrix (? x ?)
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Definitions

»System state: minimum information needed in order to completely
determine the output of a system from a given moment, provided the input
is known from that moment

»System variable: any variable that responds to an input or initial
conditions in a system

» State variables: the smallest set of linearly independent system variables
such that the values of the set members at time t; along with known inputs
completely determine the value of all system variables for all t=t,

»State vector: vector whose elements are the state variables

» State space: n-dimensional space whose axes represent the state
variables

» State equations: set of n simultaneous, first order differential equations
with n variables, where the n variables to be solved are the state variables
»Output equation: algebraic expression of the output variables of a
system as linear combinations of the state variables and the inputs




Procedure for Selecting State Variables

() = Ax(t)+ Bu(1)
Y =Cx@®)+Du®)  x(t,)=x,

» Consider the energy-storage elements in the system (capacitors and
inductors in electrical syst.; masses and springs in mechanical syst.)

» For electrical systems you would then write the derivative equation
for each energy-storage element

Voltage-current Current-voltage
Resistor  v(t) = Ri(t) i(t) = %v(t)
e
Inductor fJv(t) = L% i(t) =% [Sv(r)dr
el

[
Capacit. v(t) = ¢ Jg i(r)dr fi(e) = C*52

» So for inductors, choose current as the state variable, for capacitors
choose voltage

» Another perspective is to consider the relevant quantities in the
energy equations: (inductor E = %2 L i2, capacitor: E =2 C v2)

What do you do after selecting the
state variables?

» Solve for the derivative of each state variable as a linear
combination of system variables and the input

» Stack these scalar equations to form the state and output
equations which operate on vectors

» The following is for a systemwith n = 4, p = 2 (outputs),
m = 2 (inputs)
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X(t) = Ax(t)+ Bu(?)
y(t) = Cx(t) + Du(t)

State-space introductory example

» Example 1: Find a state-space representation of the system shown in
the figure if the output is the current through the resistor.

= Step 1 Select the state variables: write the derivative equation for
the energy-storage elements (Land C)...

c®e_; s _

&

. =V
dr € .t

and choose the differentiated quantities as the state variables (v, i)

P _; 2

e dt

= Step 2 Write the right-hand sides of “step 1” and the output equations as
linear combinations ofthe state variables and the input.

dv, . . - . -
C d; =i. = five, iy, V(1) _—|1C =—i, +i, =—%vc+zll
di, .
L d =v, = folve, iy, vt) | —— VL = Ve +v(0)
2
dv, 1 1
a =—zcVctclh
State eq g
di, | +1v(0)
at VetV




dv,
dt

di,
dt

1 1
—rcVetcl

=—Lv.+1v()

» Step 4 Obtain the S-S representation in vector-matrix form
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Another electrical example

» Example 2: Obtain the SS equations for the next circuit, with input i(9
and output vector y=[vr2 ir2]"
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Mechanical systems

» The procedure for mechanical systems is a bitdifferent, but we will still
assign a state variable for each energy-storage element

TABLE 2.4 F locity, force-dis and impedance
for springs, viscous dampers, and mass

Impedence
Component Force-velocity Force-displacement Zu(s) = Fs)X(s

S f(1) = K [yv(r)dr f(t) = Kx(1) K
0000 *=
X

Energy Vicons dape
storage e 10)= filo) = 14 f
elements ;

» A spring has potential energy and a moving mass has kinetic energy. A
viscous damper is analogous to a resistor in that itdoes nat store energy.

B 1 1-4R, 7 _I-4R,
States Eq _.C]= e ZA 'C + ZA i(t)
b - I & 7y
R,
v -1+ f) e V, _R
Out Eq k2o ) S S I 107
i ) i _1
R2 T X i A
— (- Ry
Where A= ((1 4R,)+ R.)
TABLE 2.4 Forc locity, f and i
for springs, viscous dampers, and mass
Impedence
Component Fi velocit Fe Zy(s)=F(s)/X(s
Speing Shows x(t)
f £(6) = K [yv(r)dr £(1) = Kx(r) K as dlsr‘)lacement
f but we'll use y(t)
: since that is the
Viscous damper intended output
I . . dx(t) i
[ )= fivte) 1) = 15 fis in our examples
1
Mass
f)=M d:;:” f(1) = ,\1‘111:‘:” Ms
| M
Note: T followin st of symbols and uits s ased throughot i book: /(1) N oewtons () = (mctes). o) =
K = N . fo=N. ). M = kg(kilograms = newton-seconds’,

» A spring has potential energy % k y(t)2 so we will use displacement,
y(t) as a state variable

» A moving mass has kinetic energy %2 mY(tP so we will use the
speed, Y(t), as a state variable




A mechanical example

» Example 2: Find he state eqs for the translational mechanical system shown
in figure, with y;andy;as . Y1 . Y2
outputs of the system
and f(t) the input

* What state variables should we define?

« Foreach mass we use the displacement (for the spring’s patential energy)
and speed (for the mass’s kinetic energy)

« The following are all reasonable choices for state variables:

|X|(t)=y|(f) X(0=y,t) x3(1)=y ) X4(t)=>"z(t)|

[ x0-30 x0-30 x0-y.0 x0-5.0 |

[ 10=30 x0=5.0-20 x0=50 x0=50 |

We use the following state variables:
[£O =y xO=y,0 x©O=30 x0=57,0)]

Consider the mdtion of each mass and apply Newton's secondlaw:ma=ZF.
First consider the forces onmy:

|m1y1(t) = _klyl(t)_kal(t)+k2y2(t)+f(t)|
[m,3,(5) = =k, + k)y, () + Ky, (D) + (1)

Now consider the forces on my:

|mzj}2(t) = kzyl(t)_kzyz(t)_CY2(t)|

[0 =50 %0=20 xO=30 x0=50]

We derived the following on the previous slide:
.3 (1) =~k +k,)y, () + k(0 + £
|mzj}2(t) =k, (1) - szz(t)_cyz(t)l

Combining into matrix-vector fom yields the following SS representation:
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