
ENGI 7825: Control Systems II

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

A

B
u(t) x(t) y(t)

+
+

++
x(t)

x0

D

C

The State-Space Representation:
Part 1

What to Expect
► Math-heavy, implementation-light

■ Background: Linear algebra, differential equations, stuff from 5821
► Assignments: Mostly paper and pen, some Matlab
► Practical Assignments: Using V-REP robot simulator

■ The purpose is to motivate the techniques discussed and illustrate
how they might be useful. Example problems drawn from mobile
robotics.

► Mid-term tests and final: Based on core material presented
in class and practiced on the assignments

► Note: This course is not a hands-on introduction to
industrial controls. It focuses instead on control systems
theory.

■ (But remember that theory is the stuff that is harder to learn after
graduating)

Why a Second Controls Course?
► Classical control techniques (ENGI 5821) only applicable

to single-input, single-output (SISO) systems:
■ A heating system for one room
■ Orientation of a single joint on a robot

► Many real-world systems have multiple inputs and
multiple outputs (MIMO)

■ A heating system for two rooms that accounts for heat transfer
between them:

► Input/Output: 2 temperatures
■ Simple two-wheeled mobile robot:

► Input: 2 wheel speeds
► Output: translational and rotational velocity

► Also, classical control techniques are usually based on
the assumption of zero initial conditions; Lets review...

Classical Control

►The classical (i.e. frequency-domain) approach:
converting a system’s differential equation to a
transfer function, thus generating a
mathematical model of the system that relates
the input to the output

►e.g. RLC circuit with v(t) as input and vc(t) as
output

Ri(t)+L di(t)
dt

+vc(t) = v(t)

RC dvC (t)
dt

+LC d
2vC (t)
dt 2 +vC (t) = v(t)

KVL:

We need to relate the input v(t) to the output, vc(t); Replace i(t):

i(t) =C dvc (t)
dt

input: v(t)
output: vc(t)

LC d
2vC (t)
dt2 +RC dvC (t)

dt
+vC (t) = v(t)

LC d
2vC (t)
dt2 +RC dvC (t)

dt
+vC (t) = v(t)

► Apply Laplace Transform using the following theorems:

► If the initial conditions are all zero then we get

► If the initial conditions are non-zero we get

The Laplace Transform

The need for Laplace

The Laplace Transform

The Inverse Laplace Transform

The Laplace Transform Pair Table

Laplace Transform Theorems (Part 1)

Laplace Transform Theorems (Part 2)

Partial-Fraction Expansion

Laplace Transform Theorems (Part 2)

Theorem Name

7. L{df
dt } = sF (s)� f (0�) Di↵erentiation

8. L{d2f
dt2

} = s

2

F (s)� sf (0�)� f

0(0�) Di↵erentiation

9. L{dnf
dtn } = s

n
F (s)�

Pn
k=1

s

n�k
f

(k�1)(0�) Di↵erentiation

10. L{
R t
0� f (⌧)d⌧} = F (s)

s Integration theorem

11. f (1) = lims!0

sF (s) Final value theorem

12. f (0+) = lims!1 sF (s) Initial value theorem

See the textbook for special conditions on theorems 11 and 12.

(Typos in book for items 8 and 10.)

ENGI 5821 Unit 2, Part 2: The Laplace Transform

LCs2VC (s)+RCsVC (s)+VC (s) =V (s)

LCs2VC (s)+RCsVC (s)+VC (s)− LCsvc(0)− LCv
'
c(0)− RCvc(0) =V (s)

► Zero initial conditions:

► This is a transfer function (output / input)

► With non-zero initial conditions, there is no way to get a
transfer function:

LCs2VC (s)+RCsVC (s)+VC (s) =V (s)

€

VC (s)
V (s)

=
1 LC

s2 +
R
L
s+

1
LC

VC (s)
V (s)

= ?

LCs2VC (s)+RCsVC (s)+VC (s)− LCsvc(0)− LCv
'
c(0)− RCvc(0) =V (s)

Advantages of State-Space Controls
►State-Space Controls is a method for modeling,

analyzing and designing a wide range of
systems, such as:

■ Nonzero initial condition systems
► Classical restricted to zero initial conditions

■ Multiple-input, multiple-output systems (MIMO)
► Classical restricted to single-input, single-output system

(SISO)

►State-space has other advantages that we will
see later on. For example:

■ Natural representation for nonlinear systems, time-
varying systems (variable mass systems, …)

System State
► The state of a system is the information needed in

addition to the input to determine the output
► A memoryless system’s output is determined solely by

the input
■ e.g. A single resistor with voltage as input and current as output

► The output of a causal system depends on past and
current inputs. The impact of past inputs is represented
by the state.

■ All physically realized systems are causal

► The output of a non-causal system depends on past,
current, and future inputs! No real-world physical
systems have this ability to anticipate future inputs

■ Non-causal systems can be simulated and non-causal filtering
can be applied on previously collected data

Notation
► We would like to describe general MIMO systems, so the

inputs, outputs, and states will all be vectors
► input vector: u(t)

■ Assume we have control over the input

► output vector: y(t)
■ The output is any single variable or multiple variables that we can

measure

► state vector: x(t)
■ Other variables representing the state of the system (may or may

not be measureable)

State-Space Representation
► The state-space representation for an LTI system has the general

form:

where:
x(t): state vector (n-dimensional)
y(t): output vector (p-dim)
u(t): input or control vector (m-dim)
A: dynamic matrix (? x ?)
B: input matrix (? x ?)
C: output matrix (? x ?)
D: feedforward (direct) matrix (? x ?)

00 xxDuCxy
BuAxx

=+=

+=

)(t(t)(t)(t)
(t)(t)(t)!

Initial conditions

y(t)
+
+

D

C

x0
x(t)

A

B
u(t)

++
x(t)

s

Definitions
►System state: minimum information needed in order to completely
determine the output of a system from a given moment, provided the input
is known from that moment
►System variable: any variable that responds to an input or initial
conditions in a system
►State variables: the smallest set of linearly independent system variables
such that the values of the set members at time t0 along with known inputs
completely determine the value of all system variables for all t≥t0
►State vector: vector whose elements are the state variables
►State space: n-dimensional space whose axes represent the state
variables
►State equations: set of n simultaneous, first order differential equations
with n variables, where the n variables to be solved are the state variables
►Output equation: algebraic expression of the output variables of a
system as linear combinations of the state variables and the inputs

Procedure for Selecting State Variables

► Consider the energy-storage elements in the system (capacitors and
inductors in electrical syst.; masses and springs in mechanical syst.)

► For electrical systems you would then write the derivative equation
for each energy-storage element

► So for inductors, choose current as the state variable, for capacitors
choose voltage

► Another perspective is to consider the relevant quantities in the
energy equations: (inductor E = ½ L i2, capacitor: E = ½ C v2)

Resistors, Inductors, and Capacitors

The following table gives the relevant relationships between
voltage, current, and charge for resistors, inductors, and capacitors:

Voltage-current Current-voltage Voltage-charge

Resistor v(t) = Ri(t) i(t) = 1
R

v(t) v(t) = R dq

dt

Inductor v(t) = Ldi(t)
dt

i(t) = 1
L

R
t

0 v(⌧)d⌧ v(t) = Ld

2
q(t)
dt

2

Capacit. v(t) = 1
C

R
t

0 i(⌧)d⌧ i(t) = C dv(t)
dt

v(t) = 1
C

q(t)

These components are considered both passive and linear. Passive
because they involve no internal source of energy (although
inductors and capacitors can store energy). We consider them
linear because their behavior is well-described using linear DE’s.

00 xxDuCxy
BuAxx

=+=

+=

)(t(t)(t)(t)
(t)(t)(t)!

What do you do after selecting the
state variables?

► Solve for the derivative of each state variable as a linear
combination of system variables and the input

► Stack these scalar equations to form the state and output
equations which operate on vectors

► The following is for a system with n = 4, p = 2 (outputs),
m = 2 (inputs)

x1

x2

x3

x4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

!

"

#
#
#
#

$

%

&
&
&
&

x1

x2

x3

x4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

+

?
?
?
?

!

"

#
#
#
#

$

%

&
&
&
&

u(t)
y1

y2

!

"
#
#

$

%
&
&
= ? ? ? ?

? ? ? ?

!

"
#

$

%
&

x1

x2

x3

x4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

+ ?
?

!

"
#

$

%
&u(t)

x(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

State-space introductory example
► Example 1: Find a state-space representation of the system shown in

the figure if the output is the current through the resistor.

■ Step 1 Select the state variables: write the derivative equation for
the energy-storage elements (L and C)…

and choose the differentiated quantities as the state variables (vC , iL)

 L
L

C
c v

dt
diLi

dt
dvC ==

L

R Cv(t) +-

iL(t) iC(t)
iR(t)

■ Step 2 Write the right-hand sides of “step 1” and the output equations as
linear combinations of the state variables and the input.

 2

1

, v(t)) , i(vfv
dt
diL

, v(t)), i(vfi
dt
dvC

LCL
L

LCC
c

==

== LCRLRC iviii +−=+−= 1

)(tvvv CL +−=

)(11

11

 tvv
dt
di

iv
dt
dv

LCL
L

LCCRC
c

+−=

+−=

))(,,(3 tvivfi LCR = CRR vi 1=

State eq

Output eq

 L
L

C
c v

dt
diLi

dt
dvC ==

■ Step 4 Obtain the S-S representation in vector-matrix form

[]
i
v

 i

v(t)
i
v

i
v

L

C
RR

LL

C

L

CRC

L

C

⎥
⎦

⎤
⎢
⎣

⎡
⋅=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡

−

−
=⎥

⎦

⎤
⎢
⎣

⎡

0

0
0

1

11

11

!
!

)(11

11

 tvv
dt
di

iv
dt
dv

LCL
L

LCCRC
c

+−=

+−=

CRR vi 1=

Another electrical example
► Example 2: Obtain the SS equations for the next circuit, with input i(t)

and output vector y=[vR2 iR2]T

LR1

C

iR1

iC

i(t) 4vL(t)R2
iL

iR2

States Eq
vC
iL

!

"
#

$

%
&=

1
R1CΔ

1−4R2
CΔ

− 1
LΔ

R2
LΔ

!

"

#
#

$

%

&
&

vC
iL

!

"
#
#

$

%
&
&
+

− 1−4R2
CΔ

− R2
LΔ

!

"

#
#

$

%

&
&
i(t)

Out Eq
vR2

iR2

!

"
#

$

%
&=

−(1+ 1
Δ) R2

Δ

−(1+ 1
Δ)

R2

1
Δ

!

"

#
#

$

%

&
&

vC
iL

!

"
#
#

$

%
&
&
+

− R2
Δ

− 1
Δ

!

"

#
#

$

%

&
&
i(t)

Where Δ = − (1− 4R2)+ R2
R1()

COVERED ON BOARD

Mechanical systems
► The procedure for mechanical systems is a bit different, but we will still

assign a state variable for each energy-storage element.

► A spring has potential energy and a moving mass has kinetic energy. A
viscous damper is analogous to a resistor in that it does not store energy.

Energy
storage
elements

► A spring has potential energy ½ k y(t)2 so we will use displacement,
y(t) as a state variable

► A moving mass has kinetic energy ½ m y(t)2 so we will use the
speed, y(t), as a state variable

Shows x(t)
as displacement
but we’ll use y(t)
since that is the
intended output
in our examples

A mechanical example
► Example 2: Find the state eqs for the translational mechanical system shown

in figure, with y1 and y2 as
outputs of the system
and f(t) the input

y1 y2

ck2

f(t)

m2

frictionless

k1
m1

• What state variables should we define?
• For each mass we use the displacement (for the spring’s potential energy)

and speed (for the mass’s kinetic energy)
• The following are all reasonable choices for state variables:

x1(t) = y1(t) x2 (t) = y2 (t) x3(t) = y1(t) x4 (t) = y2 (t)

x1(t) = y1(t) x2 (t) = y1(t) x3(t) = y2 (t) x4 (t) = y2 (t)

x1(t) = y1(t) x2 (t) = y2 (t)− y1(t) x3(t) = y1(t) x4 (t) = y2 (t)

We use the following state variables:

y1 y2

ck2

f(t)

m2

frictionless

k1
m1

m1y1(t) = −k1y1(t)− k2y1(t)+ k2y2 (t)+ f (t)

Consider the motion of each mass and apply Newton’s second law: m a = Σ F.
First consider the forces on m1:

)()()()()()()()(24132211 tytxtytxtytxtytx !! ====

m2y2 (t) = k2y1(t)− k2y2 (t)− cy2 (t)
Now consider the forces on m2:

m1y1(t) = −(k1 + k2)y1(t)+ k2y2 (t)+ f (t)

y1 y2

ck2

f(t)

m2

frictionless

k1
m1

We derived the following on the previous slide:

Combining into matrix-vector form yields the following SS representation:

)()()()()()()()(24132211 tytxtytxtytxtytx !! ====

)(
0
0

0010
0001

)(

0

0
0

0
00
1000
0100

4

3

2

1

2

1
1

4

3

2

1

4

3

2

1

1

22

2

2

2

1

2

1

21
tf

x
x
x
x

y
y

tf

x
x
x
x

x
x
x
x

m

m
c

m
k

m
k

m
k

m
kk ⎥

⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

!
!
!
!

m1y1(t) = −(k1 + k2)y1(t)+ k2y2 (t)+ f (t)

m2y2 (t) = k2y1(t)− k2y2 (t)− cy2 (t)

