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ENGI 7825: Control Systems ||

The State-Space Representation:
Part 1

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina



What to Expect

» Math-heavy, implementation-light
= Background: Linear algebra, differential equations, stuff from 5821

» Assignments: Mostly paper and pen, some Matlab

» Practical Assignments: Using V-REP robot simulator

= [he purpose is to motivate the techniques discussed and illustrate
how they might be useful. Example problems drawn from mobile
robotics.
» Mid-term tests and final: Based on core material presented

In class and practiced on the assignments

» Note: This course is not a hands-on introduction to
industrial controls. It focuses instead on control systems
theory.

= (But remember that theory is the stuff that is harder to learn after
graduating)



Why a Second Controls Course?

» Classical control techniques (ENGI 5821) only applicable
to single-input, single-output (SISO) systems:
= A heating system for one room
= Orientation of a single joint on a robot

» Many real-world systems have multiple inputs and
multiple outputs (MIMOQO)

= A heating system for two rooms that accounts for heat transfer
between them:

» Input/Output: 2 temperatures
= Simple two-wheeled mobile robot:
» Input: 2 wheel speeds
» Output: translational and rotational velocity

» Also, classical control techniques are usually based on
the assumption of zero initial conditions; Lets review...



Classical Control

» The classical (i.e. frequency-domain) approach:
converting a system’ s differential equation to a
transfer function, thus generating a
mathematical model of the system that relates
the input to the output

»e.g. RLC circuit with v(t) as input and v,(tf) as

output
L_T..




input: v(t)
output: v(t)

KVL:  |Ri(ewL 2O
dt

+v (1) =v(t)

We need to relate the input v(t) to the output, v,(t); Replace i(t):

dv (1)
dt

(t)=C

dv.(t)
dt

d2vc (1)

RC +LC . +v.(t)=v(t)

d*v.(t) dv.(1)
LC—5-"24+RC——2+v.(t)=v(t
dr’ dt (8 =v(0)




d*v, (1) dv.(1)
LC—24+RC—+v (1) =v(t
dr* dt () =vt)

» Apply Laplace Transform using the following theorems:

Theorem

E{% = sF(s) — f(0—)
L{gL} = $2F(s) — sf(0—) — f'(0—)

L{Gr} = s"F(s) = Yhoy 5" HFED(0-)

» If the initial conditions are all zero then we get

LCS2VC ($)+RCsV,.(s)+V,.(s)=V(s)

» If the initial conditions are non-zero we get

LCS2VC(S)+RCSVC (s)+V.(s)— LCsv_(0)— LCv'C(O) — RCv_(0)=V(s)




» Zero initial conditions:

Ve(s) 1/LC
LCs’V.(s)+RCsV.(s)+V.(s) = V() :> V(s) e Bs + 1
L LC

» This is a transfer function (output / input)

» \With non-zero initial conditions, there is no way to get a
transfer function:

LCSZVC ($)+RCsV,.(s)+V,.(s)— LCsv, (0)— LCV'C(O) —RCv.(0)=V(s)

) V) _,

V(is)




Advantages of State-Space Controls

» State-Space Controls is a method for modeling,
analyzing and designing a wide range of
systems, such as:

= Nonzero initial condition systems
» Classical restricted to zero initial conditions
= Multiple-input, multiple-output systems (MIMQO)

» Classical restricted to single-input, single-output system
(SISO)

» State-space has other advantages that we will
see later on. For example:

= Natural representation for nonlinear systems, time-
varying systems (variable mass systems, ...)



System State

» The state of a system is the information needed in
addition to the input to determine the output

» A memoryless system’s output is determined solely by
the input
= €.9. A single resistor with voltage as input and current as output
» The output of a causal system depends on past and
current inputs. The impact of past inputs is represented
by the state.

= All physically realized systems are causal

» The output of a non-causal system depends on past,
current, and future inputs! No real-world physical
systems have this ability to anticipate future inputs

= Non-causal systems can be simulated and non-causal filtering
can be applied on previously collected data



Notation

» We would like to describe general MIMO systems, so the
inputs, outputs, and states will all be vectors
» input vector: u(t)
= Assume we have control over the input

» output vector: y(t)

= [he output is any single variable or multiple variables that we can
measure

» state vector: x(t)

= Other variables representing the state of the system (may or may
not be measureable)



State-Space Representation

» The state-space representation for an LTI system has the general
form:

X(1) = Ax(t)+ Bu(y)
YO =Cx(+Du®)  x(t,)=x,

Initial conditions

where:

x(t): state vector (n-dimensional)
y(t): output vector (p-dim)

u(t): input or control vector (m-dim) J

A: dynamic matrix (? x ?) u(t) X(t) ™ x(t) +v (1)
B: input matrix (? x ?) g
C: output matrix (? x ?)

D: feedforward (direct) matrix (? x ?)

O

A

é
%
>
> ”
o
J#




Definitions

» System state: minimum information needed in order to completely
determine the output of a system from a given moment, provided the input
is known from that moment

» System variable: any variable that responds to an input or initial
conditions in a system

» State variables: the smallest set of linearly independent system variables
such that the values of the set members at time t; along with known inputs
completely determine the value of all system variables for all t=t,

» State vector: vector whose elements are the state variables

» State space: n-dimensional space whose axes represent the state
variables

» State equations: set of n simultaneous, first order differential equations
with n variables, where the n variables to be solved are the state variables

» Output equation: algebraic expression of the output variables of a
system as linear combinations of the state variables and the inputs



Procedure for Selecting State Variables

X(1) = AX(1) + Bu(y)
YO =Cx@)+Du@®)  x(1,)=X,

» Consider the energy-storage elements in the system (capacitors and
inductors in electrical syst.; masses and springs in mechanical syst.)

» For electrical systems you would then write the derivative equation
for each energy-storage element

Voltage-current Current-voltage
Resistor  v(t) = Ri(t) i(t) = &v(t)
Inductor fv(t) = L0 i(t) =1 [Tv(r)dr

Capacit. v(t) = % fot i(t)dr Qi(t) = Cd‘;_(tt)

» So for inductors, choose current as the state variable, for capacitors
choose voltage

» Another perspective is to consider the relevant quantities in the
energy equations: (inductor E = %2 L i2, capacitor: E = %2 C v?)




What do you do after selecting the
state variables?

» Solve for the derivative of each state variable as a linear
combination of system variables and the input

» Stack these scalar equations to form the state and output
equations which operate on vectors

» The following is for a system with n = 4, p = 2 (outputs),
m = 2 (inputs)

222 2|t ? A
X, 2 9 9 9 DY 9 y 2 9 9 % 7
X, 72 97 7 9 X, ? Y, 72 92 97 9 X, ?
X, P Xy ! Xy

X(t) = Ax(t)+ Bu(t)
y(t) = Cx(t) + Du(?)




State-space introductory example

» Example 1: Find a state-space representation of the system shown in
the figure if the output is the current through the resistor.

L

— ]

Wy i1
v t) i R | ——cC

= Step 1 Select the state variables: write the derivative equation for
the energy-storage elements (L and C)...

b,

C =]
dt dt

=VL

and choose the differentiated quantities as the state variables (v, i;)



cPe ;. s
dt dt

=VL

= Step 2 Write the right-hand sides of “step 1” and the output equations as
linear combinations of the state variables and the input.

dv. . ] : o :
C d; =i.=fi(ve, i, V() | —T— lic =—ig+i, =—%Vc+i,
di, .
L7t=vL =f2(VC’ lL’ V(t)) S VL=—VC +V(t)
dv, | .-
7t=—ﬁvc +EZL
State e :
Yoldi_ y
dt __LVC+LV()
Outputeq iR =f3(VC,iL,V(t)) > lR =%VC




dv

dt
di,

dt

c—

1 17
—rc Ve Tl

= -1V, +1V(t)

= Step 4 Obtain the S-S representation in vector-matrix form

I

Ve

Iy

B




Another electrical example

» Example 2: Obtain the SS equations for the next circuit, with input i(t)
and output vector y=[vg, iro]"

C

(C
7
ZOMIES I ORT

\ COVERED ON BOARD

: | 1-4R, 1 [ 1ar |

Ve RCA ~CA Ve ——cx |.
States Eq | . |= + . i(t)

: | R . s

g —I5 I I LA

vl | 0D 2w ][ -5
Out Eq _R2]= _(1+%>A ? [ - }+[ }i(t)
A

R,

Where A= —((i—4R2)+%)




Mechanical systems

» The procedure for mechanical systems is a bit different, but we will still
assign a state variable for each energy-storage element.

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

Impedence
Component Force-velocity Force-displacement Zy(s)=F($)/X(s

Spring
—— x(?)

' n. f() =K [yv(r)dr £(t) = Kx(t) K
/ :

E n e rg y Viscous dgmper

storage 1”_. 70 = A 7= 20 s
1y
elements
Mass
ﬂ‘—b x(1) dv x

Note: The following set of symbols and units is used throughout this book: f(z) = N (newtons), x(#) = m (meters), v(t) = m/s
(meters/second), K = N/m (newtons/meter), f, = N-s/m(newton-seconds/meter), M = kg(kilograms = newton-seconds’/
meter).

» A spring has potential energy and a moving mass has kinetic energy. A
viscous damperis analogous to a resistor in that it does not store energy.



TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

Component

Force-velocity

Force-displacement

Impedence
Zy@)=F($)/X(s

Spring
x(?)

-#,——.» X
I 0000 /0
K
Viscous damper
—— x(7)
f——» f(1)
5

Mass

—+— x(7)

f(t) =K Jyv(r)dr

f(t) = fvlt)

f)=M

dv(t)
dt

f(t) = Kx(t)
L dx(1)
f(t) = fUT
d*x(t
1) =)

Note: The following set of symbols and units is used throughout this book: f(z) = N (newtons), x(¢) = m (meters), v(f) = m/s
(meters/second), K = N/m (newtons/meter), f, = N-s/m(newton-seconds/meter), M = kg(kilograms = newton-seconds?/

meter).

Shows x(t)

as displacement
but we'll use y(t)
since that is the
Intended output
In our examples

» A spring has potential energy * k y(t)? so we will use displacement,
y(t) as a state variable

» A moving mass has kinetic energy % m y(t)? so we will use the
speed, y(t), as a state variable



A mechanical example

» Example 2: Find the state eqgs for the translational mechanical system shown

in figure, with y, and y, as 2 Y2
outputs of the system T o) -
and f(t) the input k, ' K,

frictionless

* What state variables should we define?

 Foreach mass we use the displacement (for the spring’s potential energy)
and speed (for the mass’s kinetic energy)

* The following are all reasonable choices for state variables:

O =30 xO)=y,0) x@)=y0) x,)=7y,(0@)

O =30 O)=y0) x@)=y,0) x,0)=y,00)

xl(t)=y1(t) xz(t)=y2(t)_y1(t) X3(t)=j71(t) x4(t)=)'/2(t)




frictionless

We use the following state variables:
@) =) x@)=y,0 x@)=y0) x,()=y,0)

Consider the motion of each mass and apply Newton’s secondlaw: ma=Z F.
First consider the forces on my:

mlj}l(t) = _k1y1(t) - k2y1(t) + kzyz(t) + f(t)
m,y, (1) = —(k; + k) y, (1) + k, 3, (1) + f ()

Now consider the forces on m,:

mzj}z(t) = kz)ﬁ(t) _kzyz(t) - Cj’z(t)




frictionless

x(O)=y0) x@)=y,) x@)=y0) x,0)=y,0)

We derived the following on the previous slide:

Combining into matrix-vector form yields the following SS representation:

myy, (1) = =(k; + k)3 (D) + ky y, () + /(1)

mzj}z(t) = k2y1(t) = kzyz(t) — C).’z (t)

0 1 0 7[x7] [0

0 0 1 X, 0 W 1 0 0 O
+ t =

2 0 0 ||x m%f() [yz} [o 1 0 0

-2 0 -Ellx,| |0

|

+

0
0

Q)




