

ENGI 7825: Control Systems II The State-Space Representation: Part 1

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

What to Expect

- Math-heavy, implementation-light
- Background: Linear algebra, differential equations, stuff from 5821
- Assignments: Mostly paper and pen, some Matlab
- Practical Assignments: Using V-REP robot simulator
- The purpose is to motivate the techniques discussed and illustrate how they might be useful. Example problems drawn from mobile robotics.
- Mid-term tests and final: Based on core material presented in class and practiced on the assignments
- Note: This course is not a hands-on introduction to industrial controls. It focuses instead on control systems theory.
- (But remember that theory is the stuff that is harder to learn after graduating)

Why a Second Controls Course?

- Classical control techniques (ENGI 5821) only applicable to single-input, single-output (SISO) systems:
- A heating system for one room
- Orientation of a single joint on a robot
- Many real-world systems have multiple inputs and multiple outputs (MIMO)
- A heating system for two rooms that accounts for heat transfer between them:
- Input/Output: 2 temperatures
- Simple two-wheeled mobile robot:
- Input: 2 wheel speeds
- Output: translational and rotational velocity
- Also, classical control techniques are usually based on the assumption of zero initial conditions; Lets review...

Classical Control

-The classical (i.e. frequency-domain) approach: converting a system' s differential equation to a transfer function, thus generating a mathematical model of the system that relates the input to the output
-e.g. RLC circuit with $v(t)$ as input and $v_{c}(t)$ as output

input: $v(t)$ output: $v_{c}(t)$

$$
\mathrm{KVL}: \quad R i(t)+L \frac{d i(t)}{d t}+v_{c}(t)=v(t)
$$

We need to relate the input $v(t)$ to the output, $v_{c}(t)$; Replace $i(t)$:

$$
\begin{gathered}
i(t)=C \frac{d v_{c}(t)}{d t} \\
R C \frac{d v_{C}(t)}{d t}+L C \frac{d^{2} v_{C}(t)}{d t^{2}}+v_{C}(t)=v(t) \\
L C \frac{d^{2} v_{C}(t)}{d t^{2}}+R C \frac{d v_{C}(t)}{d t}+v_{C}(t)=v(t)
\end{gathered}
$$

$$
L C \frac{d^{2} v_{C}(t)}{d t^{2}}+R C \frac{d v_{C}(t)}{d t}+v_{C}(t)=v(t)
$$

- Apply Laplace Transform using the following theorems:

$$
\begin{aligned}
& \text { Theorem } \\
& \begin{array}{l}
\mathcal{L}\left\{\frac{d f}{d t}\right\}=s F(s)-f(0-) \\
\mathcal{L}\left\{\frac{d^{2} f}{d t^{2}}\right\}=s^{2} F(s)-s f(0-)-f^{\prime}(0-) \\
\mathcal{L}\left\{\frac{d^{n} f}{d t^{n}}\right\}=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0-)
\end{array}
\end{aligned}
$$

- If the initial conditions are all zero then we get

$$
L C s^{2} V_{C}(s)+R C s V_{C}(s)+V_{C}(s)=V(s)
$$

- If the initial conditions are non-zero we get

$$
L C s^{2} V_{C}(s)+R C s V_{C}(s)+V_{C}(s)-L C s v_{c}(0)-L C v_{c}^{\prime}(0)-R C v_{c}(0)=V(s)
$$

- Zero initial conditions:

$$
L C s^{2} V_{C}(s)+R C s V_{C}(s)+V_{C}(s)=V(s) \Longrightarrow \frac{V_{C}(s)}{V(s)}=\frac{1 / L C}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$

- This is a transfer function (output / input)
- With non-zero initial conditions, there is no way to get a transfer function:

$$
L C s^{2} V_{C}(s)+R C s V_{C}(s)+V_{C}(s)-L C s v_{c}(0)-L C v_{c}^{\prime}(0)-R C v_{c}(0)=V(s)
$$

$$
\square \frac{V_{C}(s)}{V(s)}=?
$$

Advantages of State-Space Controls

-State-Space Controls is a method for modeling, analyzing and designing a wide range of systems, such as:

- Nonzero initial condition systems
- Classical restricted to zero initial conditions
- Multiple-input, multiple-output systems (MIMO)
- Classical restricted to single-input, single-output system (SISO)
-State-space has other advantages that we will see later on. For example:
. Natural representation for nonlinear systems, timevarying systems (variable mass systems, ...)

System State

- The state of a system is the information needed in addition to the input to determine the output
- A memoryless system's output is determined solely by the input
- e.g. A single resistor with voltage as input and current as output
- The output of a causal system depends on past and current inputs. The impact of past inputs is represented by the state.
- All physically realized systems are causal
- The output of a non-causal system depends on past, current, and future inputs! No real-world physical systems have this ability to anticipate future inputs
- Non-causal systems can be simulated and non-causal filtering can be applied on previously collected data

Notation

- We would like to describe general MIMO systems, so the inputs, outputs, and states will all be vectors
- input vector: $\mathbf{u}(\mathbf{t})$
- Assume we have control over the input
- output vector: $\mathbf{y}(\mathbf{t})$
- The output is any single variable or multiple variables that we can measure
- state vector: $\mathbf{x}(\mathbf{t})$
- Other variables representing the state of the system (may or may not be measureable)

State-Space Representation

- The state-space representation for an LTI system has the general form:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
& \mathbf{y}(t)=\mathbf{C} \mathbf{x}(t)+\mathbf{D u}(t) \quad \underbrace{\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}}_{\text {Initial conditions }}
\end{aligned}
$$

where:
$x(t)$: state vector (n-dimensional)
$y(t)$: output vector (p-dim)
$u(t)$: input or control vector (m-dim)
A: dynamic matrix (? x ?)
B : input matrix (? x ?)
C: output matrix (? x ?)
D: feedforward (direct) matrix (? x ?)

Definitions

-System state: minimum information needed in order to completely determine the output of a system from a given moment, provided the input is known from that moment
-System variable: any variable that responds to an input or initial conditions in a system
-State variables: the smallest set of linearly independent system variables such that the values of the set members at time t_{0} along with known inputs completely determine the value of all system variables for all $t \geq t_{0}$
-State vector: vector whose elements are the state variables
-State space: n-dimensional space whose axes represent the state variables
-State equations: set of n simultaneous, first order differential equations with n variables, where the n variables to be solved are the state variables
\rightarrow Output equation: algebraic expression of the output variables of a system as linear combinations of the state variables and the inputs

Procedure for Selecting State Variables

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \\
& \mathbf{y}(t)=\mathbf{C} \mathbf{x}(t)+\mathbf{D} \mathbf{u}(t) \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
\end{aligned}
$$

- Consider the energy-storage elements in the system (capacitors and inductors in electrical syst.; masses and springs in mechanical syst.)
- For electrical systems you would then write the derivative equation for each energy-storage element

	Voltage-current	Current-voltage
Resistor	$v(t)=R i(t)$	$i(t)=\frac{1}{R} v(t)$
Inductor	$v(t)=L \frac{d i(t)}{d t}$	$i(t)=\frac{1}{L} \int_{0}^{t} v(\tau) d \tau$
		$v(t)=\frac{1}{C} \int_{0}^{t} i(\tau) d \tau$
Capacit.	$i(t)=C \frac{d v(t)}{d t}$	

- So for inductors, choose current as the state variable, for capacitors choose voltage
- Another perspective is to consider the relevant quantities in the energy equations: (inductor $E=1 / 2 \mathrm{Li}^{2}$, capacitor: $\mathrm{E}=1 / 2 \mathrm{C} \mathrm{v}^{2}$)

What do you do after selecting the state variables?

- Solve for the derivative of each state variable as a linear combination of system variables and the input
- Stack these scalar equations to form the state and output equations which operate on vectors
- The following is for a system with $\mathrm{n}=4, \mathrm{p}=2$ (outputs), $\mathrm{m}=2$ (inputs)

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{l}
? \\
? \\
? \\
?
\end{array}\right] u(t) \quad\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{l}
? \\
?
\end{array}\right] u(t)
$$

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
& \mathbf{y}(t)=\mathbf{C} \mathbf{x}(t)+\mathbf{D u}(t)
\end{aligned}
$$

State-space introductory example

- Example 1: Find a state-space representation of the system shown in the figure if the output is the current through the resistor.

- Step 1 Select the state variables: write the derivative equation for the energy-storage elements (L and C)...

$$
C \frac{d v_{c}}{d t}=i_{C} \quad L \frac{d i_{L}}{d t}=v_{L}
$$

and choose the differentiated quantities as the state variables $\left(v_{C}, i_{L}\right)$

$$
C \frac{d v_{c}}{d t}=i_{C} \quad L \frac{d i_{L}}{d t}=v_{L}
$$

- Step 2 Write the right-hand sides of "step 1" and the output equations as linear combinations of the state variables and the input.

Output eq $i_{R}=f_{3}\left(v_{C}, i_{L}, v(t)\right) \longrightarrow i_{R}=\frac{1}{R} v_{C}$

$$
\begin{aligned}
& \frac{d v_{c}}{d t}=-\frac{1}{R C} v_{C}+\frac{1}{C} i_{L} \\
& \frac{d i_{L}}{d t}=-\frac{1}{L} v_{C}+\frac{1}{L} v(t)
\end{aligned}
$$

$$
i_{R}=\frac{1}{R} v_{C}
$$

- Step 4 Obtain the S-S representation in vector-matrix form

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{v}_{C} \\
i_{L}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{R C} & \frac{1}{C} \\
-\frac{1}{L} & 0
\end{array}\right] \cdot\left[\begin{array}{l}
v_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{L}
\end{array}\right] v(t)} \\
& i_{R}=\left[\begin{array}{ll}
\frac{1}{R} & 0
\end{array}\right] \cdot\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right]
\end{aligned}
$$

Another electrical example

- Example 2: Obtain the SS equations for the next circuit, with input $i(t)$ and output vector $y=\left[v_{R 2} i_{R 2}\right]^{T}$

COVERED ON BOARD

$$
\begin{aligned}
& \text { States Eq }\left[\begin{array}{l}
\dot{v}_{C} \\
i_{L}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{R_{1} C \Delta} & \frac{1-4 R_{2}}{C \Delta} \\
-\frac{1}{L \Delta} & \frac{R_{2}}{L \Delta}
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{c}
-\frac{1-4 R_{2}}{C \Delta} \\
-\frac{R_{2}}{L \Delta}
\end{array}\right] i(t) \\
& \text { Out Eq } \quad\left[\begin{array}{l}
v_{R 2} \\
i_{R 2}
\end{array}\right]=\left[\begin{array}{cc}
-\left(1+\frac{1}{\Delta}\right) & \frac{R_{\Delta}}{\Delta} \\
\frac{-\left(1+\frac{+}{\Delta}\right)}{R_{2}} & \frac{1}{\Delta}
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{c}
-\frac{R_{2}}{\Delta} \\
-\frac{1}{\Delta}
\end{array}\right] i(t) \\
& \text { Where } \quad \Delta=-\left(\left(1-4 R_{2}\right)+\frac{R_{2}}{R_{1}}\right)
\end{aligned}
$$

Mechanical systems

- The procedure for mechanical systems is a bit different, but we will still assign a state variable for each energy-storage element.

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

$$
f(t)=M \frac{d v(t)}{d t} \quad f(t)=M \frac{d^{2} x(t)}{d t^{2}}
$$

$$
M s^{2}
$$

Note: The following set of symbols and units is used throughout this book: $f(t)=\mathrm{N}$ (newtons), $x(t)=\mathrm{m}$ (meters), $v(t)=\mathrm{m} / \mathrm{s}$ (meters/second),$\quad K=\mathrm{N} / \mathrm{m}$ (newtons $/$ meter),$\quad f_{v}=\mathrm{N}-\mathrm{s} / \mathrm{m}$ (newton-seconds $/$ meter),$\quad M=\mathrm{kg}\left(\right.$ kilograms = newton-seconds ${ }^{2} /$ meter).

- A spring has potential energy and a moving mass has kinetic energy. A viscous damper is analogous to a resistor in that it does not store energy.

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

			Impedence
Component	Force-velocity	Force-displacement	$Z_{M}(s)=F(s) / X(s)$

Spring

$$
f(t)=K \int_{0}^{t} v(\tau) d \tau \quad f(t)=K x(t)
$$

K

Viscous damper

$$
f(t)=f_{\nu} v(t)
$$

$$
f(t)=f_{v} \frac{d x(t)}{d t}
$$

Shows $x(t)$ as displacement but we'll use $y(t)$ since that is the intended output in our examples

$$
f(t)=M \frac{d v(t)}{d t}
$$

$$
f(t)=M \frac{d^{2} x(t)}{d t^{2}}
$$

$$
M s^{2}
$$

Note: The following set of symbols and units is used throughout this book: $f(t)=\mathrm{N}$ (newtons), $x(t)=\mathrm{m}$ (meters), $\nu(t)=\mathrm{m} / \mathrm{s}$ (meters/second), $\quad K=\mathrm{N} / \mathrm{m}$ (newtons $/$ meter), $\quad f_{\nu}=\mathrm{N}-\mathrm{s} / \mathrm{m}$ (newton-seconds $/$ meter), $\quad M=\mathrm{kg}$ (kilograms = newton-seconds ${ }^{2} /$ meter).

- A spring has potential energy $1 / 2 k y(t)^{2}$ so we will use displacement, $\mathrm{y}(\mathrm{t})$ as a state variable
- A moving mass has kinetic energy $1 / 2 \mathrm{~m} \dot{\mathrm{y}}(\mathrm{t})^{2}$ so we will use the speed, $\dot{y}(\mathrm{t})$, as a state variable

A mechanical example

- Example 2: Find the state eqs for the translational mechanical system shown in figure, with y_{1} and y_{2} as outputs of the system and $f(t)$ the input

frictionless
- What state variables should we define?
- For each mass we use the displacement (for the spring's potential energy) and speed (for the mass's kinetic energy)
- The following are all reasonable choices for state variables:

$$
x_{1}(t)=y_{1}(t) \quad x_{2}(t)=y_{2}(t) \quad x_{3}(t)=\dot{y}_{1}(t) \quad x_{4}(t)=\dot{y}_{2}(t)
$$

$$
x_{1}(t)=y_{1}(t) \quad x_{2}(t)=\dot{y}_{1}(t) \quad x_{3}(t)=y_{2}(t) \quad x_{4}(t)=\dot{y}_{2}(t)
$$

$$
x_{1}(t)=y_{1}(t) \quad x_{2}(t)=y_{2}(t)-y_{1}(t) \quad x_{3}(t)=\dot{y}_{1}(t) \quad x_{4}(t)=\dot{y}_{2}(t)
$$

frictionless
We use the following state variables:

$$
x_{1}(t)=y_{1}(t) \quad x_{2}(t)=y_{2}(t) \quad x_{3}(t)=\dot{y}_{1}(t) \quad x_{4}(t)=\dot{y}_{2}(t)
$$

Consider the motion of each mass and apply Newton's second law: $\mathbf{m} \mathbf{a}=\boldsymbol{\Sigma} \mathbf{F}$. First consider the forces on m_{1} :

$$
\begin{gathered}
m_{1} \ddot{y}_{1}(t)=-k_{1} y_{1}(t)-k_{2} y_{1}(t)+k_{2} y_{2}(t)+f(t) \\
m_{1} \ddot{y}_{1}(t)=-\left(k_{1}+k_{2}\right) y_{1}(t)+k_{2} y_{2}(t)+f(t)
\end{gathered}
$$

Now consider the forces on m_{2} :

$$
m_{2} \ddot{y}_{2}(t)=k_{2} y_{1}(t)-k_{2} y_{2}(t)-c \dot{y}_{2}(t)
$$

We derived the following on the previous slide:

$$
\begin{gathered}
m_{1} \ddot{y}_{1}(t)=-\left(k_{1}+k_{2}\right) y_{1}(t)+k_{2} y_{2}(t)+f(t) \\
m_{2} \ddot{y}_{2}(t)=k_{2} y_{1}(t)-k_{2} y_{2}(t)-c \dot{y}_{2}(t)
\end{gathered}
$$

Combining into matrix-vector form yields the following SS representation:
$\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4}\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_{1}+k_{2}}{m_{1}} & \frac{k_{2}}{m_{1}} & 0 & 0 \\ \frac{k_{2}}{m_{2}} & -\frac{k_{2}}{m_{2}} & 0 & -\frac{c}{m_{2}}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ \frac{1}{m_{1}} \\ 0\end{array}\right] f(t) \quad\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{l}0 \\ 0\end{array}\right] f(t)$

