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ENGI 7825: Control Systems II

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina
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State-Space Fundamentals: 
Part 2: The Matrix Exponential

A “Matrixy” Integrating Factor
► Go back through the solution to the scalar system and 

see what operations are performed using the integrating 
factor:

■ Multiplication on both sides
■ Differentiation
■ Multiplication on both sides of the “inverse” ea(t-t0)

► We need some kind of matrix entity that can do all of the 
above in the same way as e-a(t-t0)

► What is special about differentiation of exponential 
functions of the form eat?

► We need something with the same property in order to 
solve an SS system for x(t).

The Matrix Exponential
► The scalar exponential is defined by the infinite power 

series:

► We define the matrix exponential by replacing a with the 
matrix A:

► Although the notation is surprising, eAt is really just a 
matrix, defined to behave in a similar way to the scalar 
exponential.
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By equating like powers of t − t0, we obtain the recursive relationship

Xk+1 = 1
k + 1

AXk k ≥ 0

which, when initialized with X0 = I , leads to

Xk = 1
k!

Ak k ≥ 0

Substituting this result into the power series (2.7) yields

X(t) =
∞∑

k=0

1
k!

Ak(t − t0)
k

We note here that the infinite power series (2.7) has the requisite con-
vergence properties so that the infinite power series resulting from term-
by-term differentiation converges to Ẋ(t), and Equation (2.6) is satisfied.

Recall that the scalar exponential function is defined by the following
infinite power series

eat = 1 + at + 1
2a2t2 + 1

6a
3t3 + · · ·

=
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k=0

1
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Motivated by this, we define the so-called matrix exponential via

eAt = I + At + 1
2A2t2 + 1

6A
3t3 + · · ·

=
∞∑

k=0

1
k!

Aktk
(2.8)
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► Once again, eAt is just notation used to represent a power series. In 
general, the matrix exponential does not equal the matrix of scalar 
exponentials of the elements in the matrix A.

► Example 1: Consider the following 4x4 matrix:

Lets obtain the first few terms of the power series:

The power series contains only a finite number of nonzero terms:
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► Example 2: For a diagonal matrix, this equality is satisfied:

Consider the diagonal nxn matrix A:

The power series contains an infinite number of terms:

Thus:
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Properties of the matrix exponential
► For any real nxn matrix A, the matrix exponential eAt satisfies:

1. eAt is the unique matrix for which:

2.For any t1 and t2:

As a consequence:

Thus, eAt is invertible for all t, with the inverse:

3.For all t, A and eAtcommute with respect to matrix product:

4.For all t:

5.For any real nxn matrix B, e(A+B)t=eAteBt for all t if and only if AB=BA
6.Finally, a useful property of the matrix exponential is that it can be 

reduced to a finite power series involving n scalar analytic functions αj(t)
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State Equation Solution
► The solution of the state differential equation is found to be:

where the matrix exponential is needed:

► The matrix exponential is sometimes referred to as the state-transition matrix
and denoted by φ(t, t0):

► Using this notation, the solution of the state differential equation can be 
written as:
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eA( t− t0 ) =
1
k!k= 0

∞

∑ A k t − t0( )k = I+A t − t0( ) +
1
2
A 2 t − t0( )2 +

1
6
A 3 t − t0( )3 +…

x(t) = eA(t−t0 )x0 + eA(t−τ )Bu(τ )dτ
t0

t
∫
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Φ(t, t0) = eA(t− t0 )

x(t) =Φ(t, t0 )x0 + Φ(t,τ )Bu(τ )dτ
t0

t
∫

zero-input response: xzi(t) xzs(t): zero-state response

Output Equation Solution
► Having the solution for the complete state response, a solution for 

the complete output equation can be obtained as:

► Any issues with these solutions for x(t) and y(t)?

► Yes!  How can we evaluate eA(t-t0) when its defined by an infinite 
series?

► Solution: We will look to the frequency domain for the solution for the 
zero-state response, which will lead to another way of evaluating eA(t-
t0).

y(t) =CeA(t−t0 )x0 + CeA(t−τ )Bu(τ )dτ
t0

t
∫ +Du(t)

zero-input output: yzi(t) yzs(t): zero-state output
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► The solution to the unforced system (u=0) is simply

therefore, the term φ ij(t) can be interpreted (and determined) as the response 
of the ith state variable due to an initial condition on the jth state variable 
when there are zero initial conditions on all other states
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x(t) = eA(t−t0 )x0 + eA(t−τ )Bu(τ )dτ
t0

t
∫ Frequency Domain Solution

► The solution for x(t) proposed so far is based on the 
mysterious matrix exponential.  Ignoring the weirdness of 
eAt, the bigger problem is how to compute it.

► We will pursue an alternate solution in the frequency 
domain which will actually lead to another way of 
computing eAt.
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L ˙ x (t) = Ax(t)+ Bu(t)[ ]
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L ˙ x (t)[ ] = L Ax(t)[ ] + L Bu(t)[ ]
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sX(s) − x0 =AX(s) + BU(s)
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X(s) = (sI−A)−1x0 + (sI−A)−1BU(s)

zero-input response: Xzi(s) Xzs(s): zero-state response

L eA(t−t0 )⎡⎣ ⎤⎦ = sI−A[ ]−1 eA(t−t0 ) = L−1 sI−A[ ]−1

x(t) = eA(t−t0 )x0 + eA(t−τ )Bu(τ )dτ
t0

t
∫
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X(s) = (sI−A)−1x0 + (sI−A)−1BU(s)

zero-input response: Xzi(s) Xzs(s): zero-state response

► This frequency-domain solution bears a strong resemblance to our previous 
solution:

► In fact, we can conclude that the matrix exponential, eA(t-t0) and (sI – A)-1 form 
a Laplace transform pair:

► We should also finish the frequency domain solution by obtaining the output:

Impulse Response
► We can divide the output into zero-input and zero-state 

components:

► Consider just Yzs(s) and recall that multiplication in the 
frequency domain is convolution in the time domain.

An impulse in the time-domain is just a 1 in the frequency 
domain.  So the impulse response in the frequency 
domain (i.e. the transfer function) is easily found:

zero-input output: Yzi(s) Yzs(s): zero-state output
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State-Space Fundamentals: exercise
► Solve the following linear second-order ordinary differential eq:

Consider the input u(t) is a step of magnitude 3
and the initial conditions:

First choose state variables in controller canonical form:
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Powers of A are not nulls,
thus, obtaining the state
transition matrix as a power
series is impractical 

B

C D

► The matrix (sI - A)-1 is required:

► Look back on your old linear algebra notes for a quick refresher on matrix 
inversion.  Another source is Williams and Lawrence, Appendix A.
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Take derivative
to confirm

►The general expression of the state-transition matrix can be obtained from

►But what if t0 ≠ 0?  Then t is just replaced with t – t0,
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