ENGI 7825: Control Systems Il

State-Space Fundamentals:
Part2: The Matrix Exponential

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

A “Matrixy” Integrating Factor

» Go back through the solution tothe scalarsystem and
see what operations are performed using the integrating
factor:

= Multiplication on both sides
= Differentiation
= Multiplication on both sides of the “inverse” ea(tt)

» We need some kind of matrix entity thatcan do all of the
above in the same way as eat0)

» What is special about differentiation of exponential
functions of the form e®?

d at __ at
a(i = ae
» We need something with the same property in order to

solve an SS system for x(t).

The Matrix Exponential

» The scalar exponentia is defined by the infinite power

series:
e =1+at+ %aztz—i- éa3t3 + -

=1
=Z;“kfk
k=0 "

» We define the matrix exponential by replacing a with the
matrix A:
M =T+ At + 1AM+ 1A 4

S
= k!

» Although the notation is surprising, e*! is really justa
matrix, defined tobehavein a similar way to the scalar
exponential.

» Once again, eA’is just notation used to represent a power series. In
general, the matrix exponential does not equal the matrix of scalar
exponentials of the elements in the matrix A.

EA' - [ea,,tl
0 0 0

» Example 1: Consider the following 4x4 matrix: 4= _01 _01 2

0 0 -1
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Lets obtain the first few terms of the power serie
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The power series contains only a finite number of nonzero terms:
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m_ Lo Loss | -1 1 00 o] €7 0 00
e _I+Ax+5At *gA’ = %tg 210 "[9 ] 0 ¢ 0 0
P | 0 0 ¢ 0




» Example 2: For adiagona matix, this equality is satisfied e =[]

4 0 - 0 0
0 4 - 0 0
Consider the diagonal nxn matrix A: 4| P
© Ay O ] 0 0
0 A 0 0 o
A=l :
The power series contains an infinite number of terms:: «
0 0 A, 0
0 0 0 A
Thus:
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Properties of the matrix exponential

» For any real nxn matrix A, the matrix exponential eA’ satisfies:

1. e’ is the unique matrix for whioh:iel\' —AeM M
dt

o © I(nxn)
2.Forany t; andty e+ = et

As a comsequence: ¢ = =M =1

Thus, e iss inverfble for alt, wit the inverse: [¢*] = ¢™
3.For all t, Aand e*commute with respectto matix product A = ¢ A
a.Forall t:[oV] T oA
5.For any real nxn matrix B, e +®Br=e¢A%e® for all tifand only if AB=BA

6.Finally, a useful property of the matrix exponential is thatitcan be
reduced to afinite power series involving n scalar analytic functions o(t)

n-l

M =Y a, (At
k=0

State Equation Solution

» The solution of the state differential equation is found to be:
X(t)=em:—mxn+fr’ eAufﬂB“(r)dT

where the matrix exponential is needed:
N 1 K 1., > 1, 3
e ‘=Z)HA*(t—rr,) =L A(r-1)+ A% t- 1) +EA‘(r—tﬂ) +o

» The matrix exponentid is sometimes referred to as the state-transifion maiix

and denoted by ¢, t): .

(I)(t,to)=e'“' )

» Using this notation, the solution of the state differential equation can be
written as:

X(1) = ®(t,1,)%, + [ O, T)Bu(r)d7

(S
zero-input response: X (t) X(t): zero-state response

Output Equation Solution

» Having the solution for the complete state response, a solution for
the complete output equation can be obtained as:

y(t) = Ce*™x, + fll Ce* " Bu(r)dt + Du(r)

zero-input output: y,(t) Y.s(t): zero-state output

» Any issues with these solutions for x(t) and y(t)?

» Yes! How can we evaluate eAt0) when its defined by an infinite
series?

» Solution: We will look to the frequency domain for the solution for the
%)ero-state response, which will lead to another way of evaluating eAt




;
X(t) = e*x, +f A Bu(r)dt
fo

» The solution to the unforced system (u=0) is simply
O [(¢a@ - 9,0 | x,0)
XO|_|$a) - $2(0)] X,0)

x,0] [$a@ - ¢,,(0]x,0)
therefore, the term ¢;(t)can be interpreted (and determined) as the response
of the i*" state variable due to an initial condition on the jh state variable
when there are zero initial conditions on all ather states

Frequency Domain Solution

» The solution for x(t) proposed so far is based on the
mysterious matrix exponential. Ignoring the weirdness of
e, the bigger problem is how to compuie it.

» We will pursue an alternate solution in the frequency
domain which will actually lead to another way of
computing eAt.

L[X(1) = AX(1) + Bu(1)]
L[x(t)] = L{AX(1)]+ L[Bu(1)]
sX(s) - x, = AX(s)+ BU(s)
X(s) = (sI-A)"'x, + (sI-A)"'BU(s)
\_V_’
zero-input response: X,(s) X.(ST: zero-state response

X(s) = (sI-A)"'x, + (sI-A)"'BU(s)
\—'—l
Zzero-input response: X,(s) X.+(s}: zero-state resporse

» This frequency-domain solution bears a strong resemblance to our previous
solution:

5
x(t) = e*x, + f _e*Bu(v)dt
o

» In fact, we can conclude thatthe matrix exporentid, eAt0 and (s|— A)' fom
a Laplace transform pair:

L[e‘4(""”:|=[slfA]il — A = LA[SI_A]A

» We should also finish the frequency domain sdution by obtaining the output:

Y(s) = CX(s)+ DU(s)
C(sI — A)"\ag + [C(s] — A)"'B + D|U(s)

Impulse Response

» We can divide the output into zero-input and zero-state

components:
Y(s) = C(sI—A)"txo+[C(sI — A)~'B+ DJU(s)
zero-input output: Y 4(s) Y .s(s): zero-state output

» Consider just Y,s(s) and recall that multiplication in the
frequency domain is convolution in the time domain.

Y.s(s) = [C(sI —A)"'B+ D|U(s)

An impulse in the time-domain is justa 1 in the frequency
domain. So the impulse response in the frequency
domain (i.e. the transfer function) is easily found:

H(s) = C(sI-A)"'B+D




State-Space Fundamentals: exercise

» Solve the fdlowing linear second-order ardinary differential eq:
)+ 73(0) +12(0) = u(z)
Consider the input ut) is a step of magnitude 3
and the initial condifons: $(0)=005 (0)=010

First choose state variables in controller canonica form:

0 1

A =
=3 =7

X(s) = (sI-A)"'x, + (sI- A)"'BU(s)

» The matrix (sl - A" is required:

s -1
sI-A=
[12 s+7]

det(sT-A) =|sT-A| =5+ 7s+12

(I-AY"' = 1 s+7 1
sT+Ts+12| =12 s

» Look back onyaur oldlinear algebra notes for a quick refresher on matrix
inversion. Another source is Williams and Lawence, Appendix A.

- N n
=y X 0 177[x] [0 0
1= )l {52 A =
2 || [ 12 -7
x, = =% X, =12 -7| |x, 1
X, =y =u, —12x, - Tx)| x,(0) 0.10
x,(0)| [0.05 Powers of A are not nulls,
thus, obtaining the state
_ | L transition matrix as a power
=1 o] Lj +[0}ucy series is impractical
LYo} XD
(I-AY" =2; s+7 1
s +Ts+12| -12 s

» Thus, from X(s) = (sI-A)'x, + (sI-A)"'BU(s)

1 s+7 1]0.10 1 s+7 1]0]3
X$) =5 ——75 t a1, e
ST+ Ts+12| =12 s[[0.05] s*+T7s+12(-12 s|1|s
0.15> +0.755+ 3
_ 1 0.1s+0.75+23] "y 3)s44) |_[Xi®)
s*+7s+12] 0055+1.8 0.055+1.8 X, (s)

(s+3)(s+4)

0.1s°+0.75s+3 025 055 04

X(5)=—— T2 =L'[X,(5)]=0.25-0.55¢" +0.4¢™"
{9 s(s+3)(s+4) s s+3 s+4 Iy(t) [ ‘(6)] 023055 +0de I
l Take derivative
to confirm
X,(5)= 0.05s+1.8 1.65 1.60

(s+3)(s+4) - s+3 s+4 I)'/(f) = Lil[X (S)]= 1.65¢™ _1-60"741

goss

(D) = L[ X,(s)]= 025 - 0.55¢ > +0.4¢™"] |

¥ 3(0)=0.10

0 T ) 2
tenete)

. N L) = L] X, (s)|=1.65¢ —1.60¢] -

. 5(0)=0.05

05 TS
tevegs)

»The general expression of the state-transition matrix can be obtained from

- _ - 1 s+7 1 4e7 =3¢ e —e
A T sT=AY ' ] = 1 —

2+ 7s+12 s —12¢7 +12¢ 3¢ +4e7

»But what ift, # 0? Thent is just replaced witht —t,,

y - - 47300 _ 37400 £ 30m0) _ p4t0)
e’w m\:LI[(SI_A)l]: e o s e
—12¢ (1 f»)+lze (1=1g) 3¢ G 'u)+4e (t=1)
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