

ENGI 7825: Control Systems II

State-Space Fundamentals: Part 2: The Matrix Exponential

Instructor: Dr. Andrew Vardy

Adapted from the notes of Gabriel Oliver Codina

A "Matrixy" Integrating Factor

- Go back through the solution to the scalar system and see what operations are performed using the integrating factor:
 - Multiplication on both sides
 - Differentiation
 - Multiplication on both sides of the "inverse" e^{a(t-t₀)}
- We need some kind of matrix entity that can do all of the above in the same way as e^{-a(t-t0)}
- What is special about differentiation of exponential functions of the form e^{at}?

$$\frac{d}{dt}e^{at} = ae^{at}$$

We need something with the same property in order to solve an SS system for x(t).

The Matrix Exponential

The scalar exponential is defined by the infinite power series:

$$e^{at} = 1 + at + \frac{1}{2}a^{2}t^{2} + \frac{1}{6}a^{3}t^{3} + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!}a^{k}t^{k}$$

We define the matrix exponential by replacing a with the matrix A:

$$e^{At} = I + At + \frac{1}{2}A^{2}t^{2} + \frac{1}{6}A^{3}t^{3} + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!}A^{k}t^{k}$$

Although the notation is surprising, e^{At} is really just a matrix, defined to behave in a similar way to the scalar exponential. Once again, e^{At} is just notation used to represent a power series. In general, the matrix exponential does not equal the matrix of scalar exponentials of the elements in the matrix A.

$$e^{\mathbf{A}t} \neq [e^{a_{ij}t}]$$

Example 1: Consider the following 4x4 matrix: A =

$$: A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Lets obtain the first few terms of the power series:

	0	0	0	0		0	0	0	0		0	0	0	0]		
$A^2 =$	0	0	0	0	A 3	0	0	0	0	4	0	0	0	0	· k · o	$\forall k \ge 4$
	1	0	0	0	A =	0	0	0	0	A =	0	0	0	0	$A^{\kappa}=0$	
	0	1	0	0		1	0	0	0		0	0	0	0		

The power series contains only a finite number of nonzero terms:

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \frac{1}{2}\mathbf{A}^{2}t^{2} + \frac{1}{6}\mathbf{A}^{3}t^{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -t & 1 & 0 & 0 \\ \frac{1}{2}t^{2} & -t & 1 & 0 \\ -\frac{1}{6}t^{3} & \frac{1}{2}t^{2} & -t & 1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 & 0 & 0 \\ e^{-t} & 0 & 0 & 0 \\ 0 & e^{-t} & 0 & 0 \\ 0 & 0 & e^{-t} & 0 \end{bmatrix}$$

► Example 2: For a diagonal matrix, this equality is satisfied: $e^{At} = [e^{a_{ij}t}]$

Consider the diagonal nxn matrix A: $A = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 & 0 \\ 0 & \lambda_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{n} \end{bmatrix}$

The power series contains an infinite number of terms:

	λ_1^k	0		0	0
	0	λ_2^k	•••	0	0
$A^k =$:	•	·.	:	:
	0	0	•••	$\boldsymbol{\lambda}_{n-1}^k$	0
	0	0	•••	0	λ_n^k

Thus:

$$e^{\mathbf{A}t} = \sum_{k=0}^{\infty} \frac{1}{k!} \begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 & 0\\ 0 & \lambda_{2}^{k} & \cdots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & \lambda_{n-1}^{k} & 0\\ 0 & 0 & \cdots & 0 & \lambda_{n}^{k} \end{bmatrix} t^{k} = \begin{bmatrix} \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{1}^{k} t^{k} & 0 & \cdots & 0 & 0\\ 0 & \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{2}^{k} t^{k} & \cdots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{n-1}^{k} t^{k} & 0\\ 0 & 0 & \cdots & 0 & \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{n}^{k} t^{k} \end{bmatrix} = \begin{bmatrix} e^{\lambda_{1}t} & 0 & \cdots & 0 & 0\\ 0 & e^{\lambda_{2}t} & \cdots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & 0 & \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{n}^{k} t^{k} \end{bmatrix}$$

Properties of the matrix exponential

- ▶ For any real nxn matrix **A**, the matrix exponential e^{At} satisfies:
 - 1. $e^{\mathbf{A}t}$ is the <u>unique</u> matrix for which: $\frac{d}{dt}e^{\mathbf{A}t} = \mathbf{A}e^{\mathbf{A}t}$ $e^{\mathbf{A}t}\Big|_{t=0} = \mathbf{I}(nxn)$
 - 2. For any t_1 and t_2 : $e^{A(t_1+t_2)} = e^{At_1}e^{At_2}$

As a consequence: $e^{\mathbf{A}(0)} = e^{\mathbf{A}(t-t)} = e^{\mathbf{A}t}e^{-\mathbf{A}t} = \mathbf{I}$ Thus, $e^{\mathbf{A}t}$ is invertible for all t, with the inverse: $\left[e^{\mathbf{A}t}\right]^{-1} = e^{-\mathbf{A}t}$

- 3. For all t, A and e^{At} commute with respect to matrix product: $Ae^{At} = e^{At}A$ 4. For all t: $[e^{At}]^T = e^{A^Tt}$
- 5. For any real nxn matrix B, $e^{(A+B)t} = e^{At}e^{Bt}$ for all t if and only if **AB=BA**
- 6. Finally, a useful property of the matrix exponential is that it can be reduced to a finite power series involving n scalar analytic functions $\alpha_i(t)$

$$e^{\mathbf{A}t} = \sum_{k=0}^{n-1} \alpha_k(t) \mathbf{A}^k$$

State Equation Solution

The solution of the state differential equation is found to be:

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)} \mathbf{x}_0 + \int_{t_0}^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$

where the matrix exponential is needed:

$$e^{\mathbf{A}(t-t_0)} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k (t-t_0)^k = \mathbf{I} + \mathbf{A}(t-t_0) + \frac{1}{2} \mathbf{A}^2 (t-t_0)^2 + \frac{1}{6} \mathbf{A}^3 (t-t_0)^3 + \dots$$

► The matrix exponential is sometimes referred to as the state-transition matrix and denoted by $\phi(t, t_0)$:

$$\Phi(t,t_0) = e^{\mathbf{A}(t-t_0)}$$

Using this notation, the solution of the state differential equation can be written as:

$$\mathbf{x}(t) = \Phi(t, t_0) \mathbf{x_0} + \underbrace{\int_{t_0}^{t} \Phi(t, \tau) \mathbf{Bu}(\tau) d\tau}_{\mathbf{X_{zs}(t): zero-state response}}$$

Output Equation Solution

Having the solution for the complete state response, a solution for the complete output equation can be obtained as:

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}(t-t_0)}\mathbf{X}_0 + \int_{t_0}^t \mathbf{C}e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau + \mathbf{D}\mathbf{u}(t)$$

zero-input output: y_{zi}(t)

y_{zs}(t): zero-state output

- ► Any issues with these solutions for x(t) and y(t)?
- Yes! How can we evaluate e^{A(t-t0)} when its defined by an infinite series?
- Solution: We will look to the frequency domain for the solution for the zero-state response, which will lead to another way of evaluating e^{A(t-t0)}.

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)} \mathbf{x}_0 + \int_{t_0}^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$

► The solution to the unforced system (u=0) is simply

$$\begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} = \begin{bmatrix} \phi_{11}(t) & \cdots & \phi_{n1}(t) \\ \phi_{21}(t) & \cdots & \phi_{n2}(t) \\ \vdots & & \vdots \\ \phi_{n1}(t) & \cdots & \phi_{nn}(t) \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \\ \vdots \\ x_{n}(0) \end{bmatrix}$$

therefore, the term $\phi_{ij}(t)$ can be interpreted (and determined) as the response of the ith state variable due to an initial condition on the jth state variable when there are zero initial conditions on all other states

Frequency Domain Solution

- The solution for x(t) proposed so far is based on the mysterious matrix exponential. Ignoring the weirdness of e^{At}, the bigger problem is how to compute it.
- We will pursue an alternate solution in the frequency domain which will actually lead to another way of computing e^{At}.

 $L[\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)]$ $L[\dot{\mathbf{x}}(t)] = L[\mathbf{A}\mathbf{x}(t)] + L[\mathbf{B}\mathbf{u}(t)]$ $s\mathbf{X}(s) - \mathbf{x}_{0} = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$ $\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}_{0} + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)$ zero-input response: X_{zi}(s) X_{zs}(s): zero-state response

$$\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}_{0} + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)$$
zero-input response: $X_{zi}(s)$ $X_{zs}(s)$: zero-state response

This frequency-domain solution bears a strong resemblance to our previous solution:

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)} \mathbf{x}_0 + \int_{t_0}^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau$$

In fact, we can conclude that the matrix exponential, e^{A(t-t₀)} and (sI – A)⁻¹ form a Laplace transform pair:

$$L\left[e^{A(t-t_0)}\right] = \left[s\mathbf{I} - \mathbf{A}\right]^{-1} \quad \longleftarrow \quad e^{A(t-t_0)} = L^{-1}\left[s\mathbf{I} - \mathbf{A}\right]^{-1}$$

▶ We should also finish the frequency domain solution by obtaining the output:

$$Y(s) = CX(s) + DU(s)$$

= $C(sI - A)^{-1}x_0 + [C(sI - A)^{-1}B + D]U(s)$

Impulse Response

We can divide the output into zero-input and zero-state components:

$$Y(s) = C(sI - A)^{-1}x_0 + [C(sI - A)^{-1}B + D]U(s)$$
zero-input output: Y_{zi}(s) Y_{zs}(s): zero-state output

Consider just Y_{zs}(s) and recall that multiplication in the frequency domain is convolution in the time domain.

$$Y_{zs}(s) = [C(sI - A)^{-1}B + D]U(s)$$

An impulse in the time-domain is just a 1 in the frequency domain. So the impulse response in the frequency domain (i.e. the transfer function) is easily found:

$$H(s) = C(sI - A)^{-1}B + D$$

State-Space Fundamentals: exercise

Solve the following linear second-order ordinary differential eq:

 $\ddot{y}(t) + 7\dot{y}(t) + 12y(t) = u(t)$

Consider the input u(t) is a step of magnitude 3 and the initial conditions: $\dot{y}(0) = 0.05$ y(0) = 0.10

First choose state variables in controller canonical form:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -12 & -7 \end{bmatrix} \qquad \mathbf{X}(s) = (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{X}_0 + (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)$$

► The matrix (sl - A)⁻¹ is required:

$$s\mathbf{I} - \mathbf{A} = \begin{bmatrix} s & -1 \\ 12 & s+7 \end{bmatrix}$$

$$det(sI - A) = |sI - A| = s^{2} + 7s + 12$$

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} s + 7 & 1 \\ -12 & s \end{bmatrix}$$

Look back on your old linear algebra notes for a quick refresher on matrix inversion. Another source is Williams and Lawrence, Appendix A.

$$(s\mathbf{I} - \mathbf{A})^{-1} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} s + 7 & 1 \\ -12 & s \end{bmatrix}$$

► Thus, from $X(s) = (sI - A)^{-1}X_0 + (sI - A)^{-1}BU(s)$

$$\mathbf{X}(s) = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} s + 7 & 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0.10 \\ 0.05 \end{bmatrix} + \frac{1}{s^2 + 7s + 12} \begin{bmatrix} s + 7 & 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} s + 7 & 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{3}{s} = \frac{1}{s^2 + 7s + 12} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix} \begin{bmatrix} 1 \\ -12 & s \end{bmatrix}$$

$$=\frac{1}{s^{2}+7s+12}\begin{bmatrix}0.1s+0.75+\frac{3}{s}\\0.05s+1.8\end{bmatrix}=\begin{bmatrix}\frac{0.1s^{2}+0.75s+3}{s(s+3)(s+4)}\\\frac{0.05s+1.8}{(s+3)(s+4)}\end{bmatrix}=\begin{bmatrix}X_{1}(s)\\X_{2}(s)\end{bmatrix}$$

$$X_{1}(s) = \frac{0.1s^{2} + 0.75s + 3}{s(s+3)(s+4)} = \frac{0.25}{s} - \frac{0.55}{s+3} + \frac{0.4}{s+4}$$

$$y(t) = L^{-1}[X_{1}(s)] = 0.25 - 0.55e^{-3t} + 0.4e^{-4t}$$

$$\int \text{Take derivative to confirm}$$

$$X_{2}(s) = \frac{0.05s + 1.8}{(s+3)(s+4)} = \frac{1.65}{s+3} - \frac{1.60}{s+4}$$

$$\dot{y}(t) = L^{-1}[X_{2}(s)] = 1.65e^{-3t} - 1.60e^{-4t}$$

► The general expression of the state-transition matrix can be obtained from

$$e^{At} = L^{-1} \begin{bmatrix} (s\mathbf{I} - \mathbf{A})^{-1} \end{bmatrix} = L^{-1} \begin{bmatrix} \frac{1}{s^2 + 7s + 12} \begin{bmatrix} s + 7 & 1 \\ -12 & s \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 4e^{-3t} - 3e^{-4t} & e^{-3t} - e^{-4t} \\ -12e^{-3t} + 12e^{-4t} & -3e^{-3t} + 4e^{-4t} \end{bmatrix}$$

▶ But what if $t_0 \neq 0$? Then t is just replaced with t – t_0 ,

$$e^{A(t-t_0)} = L^{-1} \Big[(s\mathbf{I} - \mathbf{A})^{-1} \Big] = \begin{bmatrix} 4e^{-3(t-t_0)} - 3e^{-4(t-t_0)} & e^{-3(t-t_0)} - e^{-4(t-t_0)} \\ -12e^{-3(t-t_0)} + 12e^{-4(t-t_0)} & -3e^{-3(t-t_0)} + 4e^{-4(t-t_0)} \end{bmatrix}$$