

ENGI 7825: Control Systems II State-Space Fundamentals: Part 2: The Matrix Exponential Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

A "Matrixy" Integrating Factor

- Go back through the solution to the scalar system and see what operations are performed using the integrating factor:
- Multiplication on both sides
- Differentiation
- Multiplication on both sides of the "inverse" $e^{\text {a(t-to })}$
- We need some kind of matrix entity that can do all of the above in the same way as $\mathrm{e}^{-\mathrm{a}(\mathrm{t}-\mathrm{t} 0)}$
- What is special about differentiation of exponential functions of the form $\mathrm{e}^{\text {at? }}$

$$
\frac{d}{d t} e^{a t}=a e^{a t}
$$

- We need something with the same property in order to solve an SS system for $\mathrm{x}(\mathrm{t})$.

The Matrix Exponential

- The scalar exponential is defined by the infinite power series:

$$
\begin{aligned}
e^{a t} & =1+a t+\frac{1}{2} a^{2} t^{2}+\frac{1}{6} a^{3} t^{3}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} a^{k} t^{k}
\end{aligned}
$$

- We define the matrix exponential by replacing a with the matrix A :

$$
\begin{aligned}
e^{A t} & =I+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{6} A^{3} t^{3}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} t^{k}
\end{aligned}
$$

- Although the notation is surprising, e^{At} is really just a matrix, defined to behave in a similar way to the scalar exponential.
- Once again, $e^{\mathbf{A}^{t}}$ is just notation used to represent a power series. In general, the matrix exponential does not equal the matrix of scalar exponentials of the elements in the matrix A .

$$
e^{\mathbf{A} t} \neq\left[e^{a_{j i} t}\right]
$$

- Example 1: Consider the following 4×4 matrix: $A=\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right]$

Lets obtain the first few terms of the power series:

$$
A^{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad A^{3}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right] \quad A^{4}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad A^{k}=0 \quad \forall k \geq 4
$$

The power series contains only a finite number of nonzero terms:

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{1}{2} \mathbf{A}^{2} t^{2}+\frac{1}{6} \mathbf{A}^{3} t^{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-t & 1 & 0 & 0 \\
\frac{1}{2} t^{2} & -t & 1 & 0 \\
-\frac{1}{6} t^{3} & \frac{1}{2} t^{2} & -t & 1
\end{array}\right] \quad \neq\left[e^{a_{j i} t}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
e^{-t} & 0 & 0 & 0 \\
0 & e^{-t} & 0 & 0 \\
0 & 0 & e^{-t} & 0
\end{array}\right]
$$

- Example 2: For a diagonal matrix, this equality is satisfied: $e^{\mathbf{A} t}=\left[e^{a_{i j} t}\right]$

Consider the diagonal nxn matrix A: $A=\left[\begin{array}{ccccc}\lambda_{1} & 0 & \cdots & 0 & 0 \\ 0 & \lambda_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{n}\end{array}\right]$
The power series contains an infinite number of terms:

$$
A^{k}=\left[\begin{array}{ccccc}
\lambda_{1}^{k} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2}^{k} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n-1}^{k} & 0 \\
0 & 0 & \cdots & 0 & \lambda_{n}^{k}
\end{array}\right]
$$

Thus:
$e^{\mathbf{A} t}=\sum_{k=0}^{\infty} \frac{1}{k!}\left[\begin{array}{ccccc}\lambda_{1}^{k} & 0 & \cdots & 0 & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n-1}^{k} & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{n}^{k}\end{array}\right] t^{k}=\left[\begin{array}{cccccc}\sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{1}^{k} t^{k} & 0 & \cdots & 0 & 0 \\ 0 & \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{2}^{k} t^{k} & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{n-1}^{k} t^{k} & 0 \\ 0 & 0 & \cdots & 0 & \sum_{k=0}^{\infty} \frac{1}{k!} \lambda_{n}^{k} t^{k}\end{array}\right]=\left[\begin{array}{ccccc}e^{\lambda_{1} t} & 0 & \cdots & 0 & 0 \\ 0 & e^{\lambda_{2} t} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{n-1} t} & 0 \\ 0 & 0 & \cdots & 0 & e^{\lambda_{n, t}} \\ 0 & & & & \end{array}\right]$

Properties of the matrix exponential

- For any real nxn matrix A, the matrix exponential $e^{A t}$ satisfies:

1. $e^{\mathbf{A} t}$ is the unique matrix for which: $\frac{d}{d t} e^{\mathbf{A} t}=\left.\mathbf{A} e^{\mathbf{A} t} \quad e^{\mathbf{A} t}\right|_{t=0}=\mathbf{I}(n x n)$
2. For any t_{1} and $\mathrm{t}_{2}: e^{\mathbf{A}\left(t_{1}+t_{2}\right)}=e^{\mathbf{A} t_{1}} e^{\mathbf{A} t_{2}}$

As a consequence: $e^{\mathbf{A}(0)}=e^{\mathbf{A}(t-t)}=e^{\mathbf{A} t} e^{-\mathbf{A} t}=\mathbf{I}$
Thus, $e^{\mathbf{A} t}$ is invertible for all t , with the inverse: $\left[e^{\mathbf{A} t}\right]^{-1}=e^{-\mathbf{A} t}$
3. For all t, A and $e^{\mathbf{A} t}$ commute with respect to matrix product: $\mathbf{A} e^{\mathbf{A} t}=e^{\mathbf{A} t} \mathbf{A}$
4. For all $\mathrm{t}:\left[e^{\mathbf{A} t}\right]^{T}=e^{\mathbf{A}^{T} t}$
5. For any real nxn matrix $\mathbf{B}, e^{(\mathbf{A}+\mathbf{B}) t}=e^{\mathbf{A} t} e^{\mathbf{B} t}$ for all t if and only if $\mathbf{A B}=\mathbf{B A}$
6. Finally, a useful property of the matrix exponential is that it can be reduced to a finite power series involving n scalar analytic functions $\alpha_{j}(t)$

$$
e^{\mathbf{A} t}=\sum_{k=0}^{n-1} \alpha_{k}(t) \mathbf{A}^{k}
$$

State Equation Solution

- The solution of the state differential equation is found to be:

$$
\mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
$$

where the matrix exponential is needed:

$$
e^{\mathbf{A}\left(t-t_{0}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k}\left(t-t_{0}\right)^{k}=\mathbf{I}+\mathbf{A}\left(t-t_{0}\right)+\frac{1}{2} \mathbf{A}^{2}\left(t-t_{0}\right)^{2}+\frac{1}{6} \mathbf{A}^{3}\left(t-t_{0}\right)^{3}+\ldots
$$

- The matrix exponential is sometimes referred to as the state-transition matrix and denoted by $\phi\left(\mathrm{t}, \mathrm{t}_{0}\right)$:

$$
\Phi\left(t, t_{0}\right)=e^{\mathbf{A}\left(t-t_{0}\right)}
$$

- Using this notation, the solution of the state differential equation can be written as:

$$
\text { zero-input response: } \mathrm{x}_{\mathrm{zi}}(\mathrm{t})
$$

$$
\text { esponse: } \underbrace{\mathbf{x}(t)=\underbrace{\Phi\left(t, t_{0}\right)}_{\mathrm{x}_{\mathrm{zs}}(\mathrm{t}): \text { zero-state response }} \mathbf{x}_{\mathbf{0}}}_{\mathrm{x}_{\mathrm{z}}(\mathrm{t})}+\underbrace{\int_{t_{0}}^{t} \Phi(t, \tau) \mathbf{B u}(\tau)}_{t_{0}} d \tau
$$

Output Equation Solution

- Having the solution for the complete state response, a solution for the complete output equation can be obtained as:

$$
\text { zero-input output: } \mathbf{y}(t)=\underbrace{\mathbf{C} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{\mathbf{0}}}_{\mathrm{y}_{\mathrm{zi}}(\mathrm{t})}+\underbrace{\int_{t_{0}}^{t} \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)}_{\mathrm{y}_{\mathrm{zs}}(\mathrm{t}) \text { : zero-state output }}
$$

- Any issues with these solutions for $x(t)$ and $y(t)$?
- Yes! How can we evaluate $\mathrm{e}^{\mathrm{A}(\mathrm{t}-0)}$ when its defined by an infinite series?
- Solution: We will look to the frequency domain for the solution for the zero-state response, which will lead to another way of evaluating $\mathrm{e}^{\text {A(t- }}$ t0).

$$
\mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d \tau
$$

- The solution to the unforced system ($\mathrm{u}=0$) is simply

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]=\left[\begin{array}{ccc}
\phi_{11}(t) & \cdots & \phi_{n 1}(t) \\
\phi_{21}(t) & \cdots & \phi_{n 2}(t) \\
\vdots & & \vdots \\
\phi_{n 1}(t) & \cdots & \phi_{n n}(t)
\end{array}\right]\left[\begin{array}{c}
x_{1}(0) \\
x_{2}(0) \\
\vdots \\
x_{n}(0)
\end{array}\right]
$$

therefore, the term $\phi_{\mathrm{ij}}(\mathrm{t})$ can be interpreted (and determined) as the response of the $\mathrm{i}^{\text {th }}$ state variable due to an initial condition on the $\mathrm{j}^{\text {th }}$ state variable when there are zero initial conditions on all other states

Frequency Domain Solution

- The solution for $x(t)$ proposed so far is based on the mysterious matrix exponential. Ignoring the weirdness of $\mathrm{e}^{\text {At }}$, the bigger problem is how to compute it.
- We will pursue an alternate solution in the frequency domain which will actually lead to another way of computing e ${ }^{\text {At }}$.

$$
\begin{gathered}
L[\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)] \\
L[\dot{\mathbf{x}}(t)]=L[\mathbf{A} \mathbf{x}(t)]+L[\mathbf{B u}(t)] \\
s \mathbf{X}(s)-\mathbf{x}_{\mathbf{0}}=\mathbf{A} \mathbf{X}(s)+\mathbf{B} \mathbf{U}(s) \\
\mathbf{X}(s)=\underbrace{(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{x}_{\mathbf{0}}}_{\text {response: } \mathrm{X}_{\mathrm{zi}}(\mathrm{~s})}+\underbrace{(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B U}(s)}_{\mathbf{X}_{\mathrm{zs}}(\mathrm{~s}): \text { zero-state response }}
\end{gathered}
$$

$$
\mathbf{X}(s)=\underbrace{s \mathbf{I}-\mathbf{A})^{-1} \mathbf{x}_{0}}_{\text {response: } \mathrm{X}_{\mathrm{zi}}(\mathrm{~s})}+\underbrace{(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B U}(s)}_{\mathbf{X}_{\mathrm{zs}}(\mathrm{~s}): \text { zero-state response }}
$$

- This frequency-domain solution bears a strong resemblance to our previous solution:

$$
\mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{\mathbf{0}}+\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
$$

- In fact, we can conclude that the matrix exponential, $\mathrm{e}^{\mathrm{A}\left(\mathrm{t}-\mathrm{t}_{0}\right)}$ and $(\mathrm{sl}-\mathrm{A})^{-1}$ form a Laplace transform pair:

$$
L\left[e^{A\left(t-t_{0}\right)}\right]=[s \mathbf{I}-\mathbf{A}]^{-1} \longleftrightarrow e^{A\left(t-t_{0}\right)}=L^{-1}[s \mathbf{I}-\mathbf{A}]^{-1}
$$

- We should also finish the frequency domain solution by obtaining the output:

$$
\begin{aligned}
Y(s) & =C X(s)+D U(s) \\
& =C(s I-A)^{-1} x_{0}+\left[C(s I-A)^{-1} B+D\right] U(s)
\end{aligned}
$$

Impulse Response

- We can divide the output into zero-input and zero-state components:

$$
Y(s)=\underbrace{C(s I-A)^{-1} x_{0}}_{\text {zero-input output: } \mathrm{Y}_{\mathrm{zi}}(\mathrm{~s})}+\underbrace{\left[C(s I-A)^{-1} B+D\right] U(s)}_{\mathrm{Y}_{\mathrm{zs}}(\mathrm{~s}): \text { zero-state output }}
$$

- Consider just $\mathrm{Y}_{\mathrm{zs}}(\mathrm{s})$ and recall that multiplication in the frequency domain is convolution in the time domain.

$$
Y_{z s}(s)=\left[C(s I-A)^{-1} B+D\right] U(s)
$$

An impulse in the time-domain is just a 1 in the frequency domain. So the impulse response in the frequency domain (i.e. the transfer function) is easily found:

$$
H(s)=C(s I-A)^{-1} B+D
$$

State-Space Fundamentals: exercise

- Solve the following linear second-order ordinary differential eq:

$$
\ddot{y}(t)+7 \dot{y}(t)+12 y(t)=u(t)
$$

Consider the input $u(t)$ is a step of magnitude 3 and the initial conditions:

$$
\dot{y}(0)=0.05 \quad y(0)=0.10
$$

First choose state variables in controller canonical form:

$$
\begin{aligned}
& x_{1}=y \\
& x_{2}=\dot{y}=\dot{x}_{1} \\
& \dot{x}_{2}=\ddot{y}=u_{s}-12 x_{1}-7 x_{2}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-12 & -7
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)} \\
{\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
0.10 \\
0.05
\end{array}\right]}
\end{gathered}
$$

$$
\frac{y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] \cdot u(t)}{\mathrm{C}}
$$

Powers of A are not nulls, thus, obtaining the state transition matrix as a power series is impractical
$\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -12 & -7\end{array}\right]$

$$
\mathbf{X}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{x}_{\mathbf{0}}+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B} \mathbf{U}(s)
$$

- The matrix $(\mathbf{s I}-\mathbf{A})^{-1}$ is required:

$$
\begin{gathered}
s \mathbf{I}-\mathbf{A}=\left[\begin{array}{cc}
s & -1 \\
12 & s+7
\end{array}\right] \\
\operatorname{det}(s \mathbf{I}-\mathbf{A})=|s \mathbf{I}-\mathbf{A}|=s^{2}+7 s+12 \\
(s \mathbf{I}-\mathbf{A})^{-1}=\frac{1}{s^{2}+7 s+12}\left[\begin{array}{cc}
s+7 & 1 \\
-12 & s
\end{array}\right]
\end{gathered}
$$

- Look back on your old linear algebra notes for a quick refresher on matrix inversion. Another source is Williams and Lawrence, Appendix A.

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\frac{1}{s^{2}+7 s+12}\left[\begin{array}{cc}
s+7 & 1 \\
-12 & s
\end{array}\right]
$$

- Thus, from $\mathbf{X}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{x}_{\mathbf{0}}+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B U}(s)$

$$
\begin{aligned}
& \mathbf{X}(s)=\frac{1}{s^{2}+7 s+12}\left[\begin{array}{cc}
s+7 & 1 \\
-12 & s
\end{array}\right]\left[\begin{array}{c}
0.10 \\
0.05
\end{array}\right]+\frac{1}{s^{2}+7 s+12}\left[\begin{array}{ll}
s+7 & 1 \\
-12 & s
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \frac{3}{s}= \\
& =\frac{1}{s^{2}+7 s+12}\left[\begin{array}{c}
0.1 s+0.75+\frac{3}{s} \\
0.05 s+1.8
\end{array}\right]=\left[\begin{array}{c}
\frac{0.1 s^{2}+0.75 s+3}{s(s+3)(s+4)} \\
\frac{0.05 s+1.8}{(s+3)(s+4)}
\end{array}\right]=\left[\begin{array}{l}
X_{1}(s) \\
X_{2}(s)
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{cc}
X_{1}(s)=\frac{0.1 s^{2}+0.75 s+3}{s(s+3)(s+4)}=\frac{0.25}{s}-\frac{0.55}{s+3}+\frac{0.4}{s+4} & \begin{array}{ll}
& y(t)=L^{-1}\left[X_{1}(s)\right]=0.25-0.55 e^{-3 t}+0.4 e^{-4 t} \\
\begin{array}{l}
\text { Take derivative } \\
\text { to confirm }
\end{array} \\
X_{2}(s)=\frac{0.05 s+1.8}{(s+3)(s+4)}=\frac{1.65}{s+3}-\frac{1.60}{s+4} & \dot{y}(t)=L^{-1}\left[X_{2}(s)\right]=1.65 e^{-3 t}-1.60 e^{-4 t}
\end{array}
\end{array}
$$

- The general expression of the state-transition matrix can be obtained from

$$
e^{A t}=L^{-1}\left[(s \mathbf{I}-\mathbf{A})^{-1}\right]=L^{-1}\left[\frac{1}{s^{2}+7 s+12}\left[\begin{array}{cc}
s+7 & 1 \\
-12 & s
\end{array}\right]\right]=\left[\begin{array}{cc}
4 e^{-3 t}-3 e^{-4 t} & e^{-3 t}-e^{-4 t} \\
-12 e^{-3 t}+12 e^{-4 t} & -3 e^{-3 t}+4 e^{-4 t}
\end{array}\right]
$$

-But what if $\mathrm{t}_{0} \neq 0$? Then t is just replaced with $\mathrm{t}-\mathrm{t}_{0}$,

$$
e^{A\left(t-t_{0}\right)}=L^{-1}\left[(s \mathbf{I}-\mathbf{A})^{-1}\right]=\left[\begin{array}{cc}
4 e^{-3\left(t-t_{0}\right)}-3 e^{-4\left(t-t_{0}\right)} & e^{-3\left(t-t_{0}\right)}-e^{-4\left(t-t_{0}\right)} \\
-12 e^{-3\left(t-t_{0}\right)}+12 e^{-4\left(t-t_{0}\right)} & -3 e^{-3\left(t-t_{0}\right)}+4 e^{-4\left(t-t_{0}\right)}
\end{array}\right]
$$

