ENGI 7825: Control Systems Il

State-Space Fundamentals:
Part1

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

Introduction

» The basic mathematica model for an LTI system consists of the
state equation X(t) = Ax(t) + Bu(t) X(t)) =X,
and the output equation ¥(1) = Cx(1) + Du(1)

» Rather than dive into the full solufion for this vector-matrix equation, we will
start by deriving the sdution to the
X(t) = ax(t)+bu(t) x(t,) = x,
(1) = cx(1) + du(t)
» If x(t) is known then the output equation follows directly fom the state

equation. Therefore we focus exclusively on the state equation.
» Begin by re-writing in the standard form for a firstorder DE:

z(t) — ax(t) = bu(t)

z(t) — az(t) = bu(t)
» A standard solution technique for first-order DE’s is to
multiply both sides by thefollowing integrating factor:
e—a(t—to)
» This yields the following:
c_“‘("_t”);i'(t) - (3_("("‘_"”)a¢'(t) = (3_“'(t_"‘J)b'u(t)

» That didn’'t seemto help! Try taking the derivative of the
integrating factor, multiplied by x(t):

% {e‘“’“‘_t‘)):l:(t)} = e_"(t_t‘)):if(t) — fi_(l(t_t())(l.’lf(t)

e_a(t_to)j:(t) _ e—a(t—to)aw(t) — e—a(t—tﬂ)bu(t)
d

= [emt=a()] = emat—toli(r) - e=o(t—tulag(t)

» So we can replace the LHS of the top equation with the
LHS of the bottom:

C(l_it [c_“(t_t")zz:(t)} = e_“(t_t‘))bu(t)
» We can now integrate both sides totry and expose x(t):

ot t
1
/ £ [e‘a(T_t")z(T)] dT:/ e_“(T_t“)bu(T)dT
t

t, dT o

» Prior to integrating we changed the variablefromt to to
avoid confusion with the upper limit of integration

t d t
/ — [e_“("_t”)w(r)] dT:/ e_a(T_to)bu(T)dT
t

, dr to

» The following is a corollary of the fundamental theorem of
calculus:

b
d

| 5t = £6) - f(a)

» Applying this and a little algebra yields our final solution!

t
(’_n(t_t”)l‘(t) _ (’_a(t”_t“)fﬂ(fo) — / C_G(T_t“)bll(’l')d’l'

to

t
e—a(t—tn)l.(t)_lv(fo) = / e‘a(T—t.l)bu(T)dT

to

t
z(t) = (%”(""’“):n(fo)ﬁ—/ e Mbu(r)dr

to

¢
z(t) = e“(t“t"):c(to)—{—/ eENby(r)dr

to

» To refer to the initial conditions, we may use x(t) or just xo:

t
z(t) = e”(t’t”)m(,+/ e CDpu(r)dr
to

_v_l

fnearg;grgsmgoszfe zero-state response
- “forced response”

» The first part is known as the zero-input response (or
natural response) and represents theresponse withno
input.

» The second part is the zero-state response (or forced
response) and represents the response of the system to
the input, assuming that theinitial state was zero.

i
x(t) — ea(t—tu)xo_i_/ ea(t—r)bu(T)dT
to
y(t) = cx(t) + du(t)

» We can substitute x(t) directly into the output equation to
obtain y(t):

'
y(t) = (:e"("“‘).lf()%—/ ce® D bu(r)dr + du(t)
Jto

t
yt) = cetto)g 4+ / ce® =" bu(7)dr + du(t)
to
» We often like to characterize a system by its impulse response. This is
obtained by setting u(t) = 8(t) under zero initial conditions, x = 0 (the
zero vector) at tp=0":

h(t)

t
/ e (1)dr + do(t)

ce® Db+ dé(t)

» We used the sifting property of the impulse to pluck out the value of
the integrated function at 0. We can then use the impulse response b
get the zero-state response output for any u(t):

t t
/ cebu(t)dt +du(t) = / [ce®™b 4+ ds(t — T)Ju(r)dt

:/ h(t — u(r)dt

=h(t) % u(t)

From scalar solution to vector solution

So we obtained the
solution to the scalar
system,
X(t) = ax(t) + bu(t) x(t,) = x,
(1) = cx(t) + du(r)

using the integrating
factor,
e—a(t—tn)

resulting in,

ot
z(t) = etz + / e hu(r)dr
Jitg

g g —

Xzi(t) Xas(t)

The solution to the vector
system,

X(1) = Ax(1) + Bu(t) X(t,) =X,

y(t) = Cx() + Du(z)
can be obtained in the
exact same way using the
integrating factor,

o~ Alt—to)

resulting in,

t
z(t) = (““’"‘]‘ru+/r"‘“’“bu(r)dr
Ju

\ D g pem—

Xai(t) Xas(t)

But what the hell is this?

o Alt—to)

