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State-Space Fundamentals: 
Part 1



Introduction
► The basic mathematical model for an LTI system consists of the

state equation
and the output equation

► Rather than dive into the full solution for this vector-matrix equation, we will 
start by deriving the solution to the  

► If x(t) is known then the output equation follows directly from the state 
equation.  Therefore we focus exclusively on the state equation.

► Begin by re-writing in the standard form for a first-order DE:

€ 

˙ x (t) = Ax(t)+ Bu(t)       x(t0) = x0

y(t) = Cx(t)+ Du(t) 

€ 

˙ x (t) = ax(t) + bu(t)       x(t0) = x0

y(t) = cx(t) + du(t)



► A standard solution technique for first-order DE’s is to 
multiply both sides by the following integrating factor:

► This yields the following:

► That didn’t seem to help!  Try taking the derivative of the 
integrating factor, multiplied by x(t):



► So we can replace the LHS of the top equation with the 
LHS of the bottom:

► We can now integrate both sides to try and expose x(t):

► Prior to integrating we changed the variable from t to ¿ to 
avoid confusion with the upper limit of integration



► The following is a corollary of the fundamental theorem of 
calculus:

► Applying this and a little algebra yields our final solution!



► To refer to the initial conditions, we may use x(t0) or just x0:

► The first part is known as the zero-input response (or 
natural response) and represents the response with no 
input.

► The second part is the zero-state response (or forced 
response) and represents the response of the system to 
the input, assuming that the initial state was zero.

zero-input response
“natural response” zero-state response

“forced response”



► We can substitute x(t) directly into the output equation to 
obtain y(t):



► We often like to characterize a system by its impulse response.  This is 
obtained by setting u(t) = δ(t) under zero initial conditions, x0 = 0 (the 
zero vector) at t0=0-:

► We used the sifting property of the impulse to pluck out the value of 
the integrated function at 0.  We can then use the impulse response to 
get the zero-state response output for any u(t):
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From the convolution property of the Laplace transform, we obtain

x(t) = eatx0 + eat ∗ bu(t)

= eatx0 +
∫ t

0
ea(t−τ )bu(τ ) dτ

which agrees with the solution (2.3) derived earlier for t0 = 0.
If our first-order system had an associated scalar output signal y(t)

defined by the algebraic relationship

y(t) = cx(t) + d u(t) (2.4)

then by simply substituting the state response we obtain

y(t) = ceatx0 +
∫ t

0
cea(t−τ )bu(τ ) dτ + du(t)

which also admits a decomposition into zero-input and zero-state response
components. In the Laplace domain, we also have

Y(s) = c

s − a
x0 + cb

s − a
U(s)

We recall that the impulse response of a linear time-invariant system is
the system’s response to an impulsive input u(t) = δ(t) when the system
is initially at rest, which in this setting corresponds to zero initial state
x0 = 0. By interpreting the initial time as t0 = 0−, just prior to when
the impulse occurs, the zero-state response component of y(t) yields the
system’s impulse response, that is,

h(t) =
∫ t

0−
cea(t−τ )bδ(τ ) dτ + dδ(t)

= ceatb + dδ(t)

(2.5)

where we have used the sifting property of the impulse to evaluate the inte-
gral. Now, for any input signal u(t), the zero-input response component
of y(t) can be expressed as

∫ t

0−
cea(t−τ )bu(τ ) dτ + du(t) =

∫ t

0−
[cea(t−τ )b + dδ(t − τ )]u(τ ) dτ

=
∫ t

0−
h(t − τ )u(τ ) dτ

= h(t) ∗ u(t)



From scalar solution to vector solution
So we obtained the 
solution to the scalar 
system,

using the integrating 
factor,

resulting in,

€ 

˙ x (t) = ax(t) + bu(t)       x(t0) = x0

y(t) = cx(t) + du(t)

xzi(t) xzs(t)

The solution to the vector 
system,

can be obtained in the 
exact same way using the 
integrating factor,

resulting in,

€ 

˙ x (t) = Ax(t)+ Bu(t)       x(t0) = x0

y(t) = Cx(t)+ Du(t) 

xzi(t) xzs(t)



But what the hell is this?


