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State-Space Fundamentals:
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Introduction

The basic mathematical model for an LTI system consists of the
state equation X(t) = Ax(t) + Bu(t) X(1,) = X,
and the output equation y(1) = Cx(1) + Du(?)

Rather than dive into the full solution for this vector-matrix equation, we will
start by deriving the solution to the

X(t) = ax(t) + bu(t) x(t,) = x,
yv(t) =cx(t) + du(t)

If x(t) is known then the output equation follows directly from the state
equation. Therefore we focus exclusively on the state equation.

Begin by re-writing in the standard form for a first-order DE:

t(t) — ax(t) = bu(t)



t(t) — ax(t) = bu(t)

» A standard solution technique for first-order DE’s is to
multiply both sides by the following integrating factor:

e—a(t—t0>

» This yields the following:
e~ =t0) i (¢) — e~ aU=t0) g (1) = e~ E—t0) pyy ()

» That didn’t seem to help! Try taking the derivative of the
integrating factor, multiplied by x(t):
d

7 [e_a(t_t())x(t)] — e_a(t_t()):i:(t) — e_a(t_t‘))ax(t)



e~ =t0) (1) — e~ Et0) g (t) = e~ U= t0) oy (¢)

d
[e_a(t_t())a:(t)] = e~ 2t=t0) g (¢) — emat=t0) g (¢)

dt

» SO we can replace the LHS of the top equation with the
LHS of the bottom:

d
= [e_a(t_t‘))a:(t)} = e_a(t_t(’)bu(t)

» We can now integrate both sides to try and expose x(t):

t d t
/ — {e_a(T_tO)x(T)} dT:/ e_a(T_tO)bu(T)dT
t dr

to

» Prior to integrating we changed the variable from t to ; to
avoid confusion with the upper limit of integration



t d t
/ . [e_a(T_tO)x(T)} dr z/ e~ T=t0) by (T)dr
to 4T

to
» The following is a corollary of the fundamental theorem of
calculus: b g
[ 5o =10 - 1)

» Applying this and a little algebra yields our final solution!

¢
e_a(t_t())az(t)—e_a(to_tO)az(to) — /e_a(T_tO)bu(T)dT
to
¢
e~ =t0) () — z(ty) = / e~ Tt0) by (7)dr
to

t
x(t) = ea(t_tO)x(to)+/ e pu(7)dr
to



t
x(t) = ea(t_t(’)x(to)—i—/ e~ by (1)dr

o
» To refer to the initial conditions, we may use Xx(t;) or just X,:

t
x(t) = ea(tt0>xo+/ e hu(r)dr

to
\ ) \ y

¥ Y
zero-input response
“natural response”

zero-state response
“forced response”

» The first part is known as the zero-input response (or
natural response) and represents the response with no
input.

» The second part is the zero-state response (or forced
response) and represents the response of the system to
the input, assuming that the initial state was zero.



cx(t) + du(t)
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» We can substitute x(t) directly into the output equation to
obtain y(t):

t
y(t) = ce“(t_t())xo—l—/ ce® D hu(r)dr + du(t)
to



t
y(t) = cea’(t_t())xo—l—/ ce® T pu(r)dr + du(t)

to

» We often like to characterize a system by its impulse response. This is
obtained by setting u(t) = &(t) under zero initial conditions, x, = 0 (the
zero vector) at t,=0:

h(t) = / t ce® TS (T dr + db(t)

= ce®Db+ di(t)

» We used the sifting property of the impulse to pluck out the value of
the integrated function at 0. We can then use the impulse response to
get the zero-state response output for any u(t):

t t
/ ce“Obu(t)dt +du@®) = | [ce Vb +ds(t — 1)u(r)dT
3 o

— / h(t—‘L’)M(‘L’)d‘L’

= h(t) *xu(t)



From scalar solution to vector solution

So we obtained the
solution to the scalar
system,

X(t) = ax(t) + bu(t) x(t,) = x,
yv(t) =cx(t) + du(t)

using the integrating
factor,

e—a(t—to)

resulting in,

t
z(t) = e®tt0) g 4 / e bu(1)dr
to
N N r—
Xzi(t) Xzs(t)

The solution to the vector
system,

X(t) = AXx(t) + Bu(t) X(t,) =X,
y(t) = Cx(t) + Du(?)

can be obtained in the
exact same way using the
integrating factor,

resulting in,
t

zr(t) = eA(t_tO)x0+/ e =T bu(r)dr
to

—— = _—
——

Xzi(t) Xzs(t)



But what the hell is this?
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