

# ENGI 7825: Control Systems II State-Space Fundamentals: Part 1 

Instructor: Dr. Andrew Vardy

Adapted from the notes of
Gabriel Oliver Codina

## Introduction

- The basic mathematical model for an LTI system consists of the
state equation
and the output equation

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}} \\
& \mathbf{y}(t)=\mathbf{C} \mathbf{x}(t)+\mathbf{D u}(t)
\end{aligned}
$$

- Rather than dive into the full solution for this vector-matrix equation, we will start by deriving the solution to the

$$
\begin{aligned}
& \dot{x}(t)=a x(t)+b u(t) \quad x\left(t_{0}\right)=x_{0} \\
& y(t)=c x(t)+d u(t)
\end{aligned}
$$

- If $x(t)$ is known then the output equation follows directly from the state equation. Therefore we focus exclusively on the state equation.
- Begin by re-writing in the standard form for a first-order DE:

$$
\dot{x}(t)-a x(t)=b u(t)
$$

$$
\dot{x}(t)-a x(t)=b u(t)
$$

- A standard solution technique for first-order DE's is to multiply both sides by the following integrating factor:

$$
e^{-a\left(t-t_{0}\right)}
$$

- This yields the following:

$$
e^{-a\left(t-t_{0}\right)} \dot{x}(t)-e^{-a\left(t-t_{0}\right)} a x(t)=e^{-a\left(t-t_{0}\right)} b u(t)
$$

- That didn't seem to help! Try taking the derivative of the integrating factor, multiplied by $\mathrm{x}(\mathrm{t})$ :

$$
\frac{d}{d t}\left[e^{-a\left(t-t_{0}\right)} x(t)\right]=e^{-a\left(t-t_{0}\right)} \dot{x}(t)-e^{-a\left(t-t_{0}\right)} a x(t)
$$

$$
\begin{gathered}
e^{-a\left(t-t_{0}\right)} \dot{x}(t)-e^{-a\left(t-t_{0}\right)} a x(t)=e^{-a\left(t-t_{0}\right)} b u(t) \\
\frac{d}{d t}\left[e^{-a\left(t-t_{0}\right)} x(t)\right]=e^{-a\left(t-t_{0}\right)} \dot{x}(t)-e^{-a\left(t-t_{0}\right)} a x(t)
\end{gathered}
$$

- So we can replace the LHS of the top equation with the LHS of the bottom:

$$
\frac{d}{d t}\left[e^{-a\left(t-t_{0}\right)} x(t)\right]=e^{-a\left(t-t_{0}\right)} b u(t)
$$

- We can now integrate both sides to try and expose $x(t)$ :

$$
\int_{t_{0}}^{t} \frac{d}{d \tau}\left[e^{-a\left(\tau-t_{0}\right)} x(\tau)\right] d \tau=\int_{t_{0}}^{t} e^{-a\left(\tau-t_{0}\right)} b u(\tau) d \tau
$$

- Prior to integrating we changed the variable from $t$ to $i$ to avoid confusion with the upper limit of integration

$$
\int_{t_{0}}^{t} \frac{d}{d \tau}\left[e^{-a\left(\tau-t_{0}\right)} x(\tau)\right] d \tau=\int_{t_{0}}^{t} e^{-a\left(\tau-t_{0}\right)} b u(\tau) d \tau
$$

- The following is a corollary of the fundamental theorem of calculus:

$$
\int_{a}^{b} \frac{d}{d t} f(t) d t=f(b)-f(a)
$$

- Applying this and a little algebra yields our final solution!

$$
\begin{aligned}
e^{-a\left(t-t_{0}\right)} x(t)-e^{-a\left(t_{0}-t_{0}\right)} x\left(t_{0}\right) & =\int_{t_{0}}^{t} e^{-a\left(\tau-t_{0}\right)} b u(\tau) d \tau \\
e^{-a\left(t-t_{0}\right)} x(t)-x\left(t_{0}\right) & =\int_{t_{0}}^{t} e^{-a\left(\tau-t_{0}\right)} b u(\tau) d \tau \\
x(t) & =e^{a\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{a(t-\tau)} b u(\tau) d \tau
\end{aligned}
$$

$$
x(t)=e^{a\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{a(t-\tau)} b u(\tau) d \tau
$$

- To refer to the initial conditions, we may use $\mathrm{x}\left(\mathrm{t}_{0}\right)$ or just $\mathrm{x}_{0}$ :

$$
\begin{aligned}
& \text { zero-input response } \\
& \text { "natural response" } \\
& \text { zero-state response } \\
& \text { "forced response" }
\end{aligned}
$$

- The first part is known as the zero-input response (or natural response) and represents the response with no input.
- The second part is the zero-state response (or forced response) and represents the response of the system to the input, assuming that the initial state was zero.

$$
\begin{gathered}
x(t)=e^{a\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} e^{a(t-\tau)} b u(\tau) d \tau \\
y(t)=c x(t)+d u(t)
\end{gathered}
$$

- We can substitute $x(t)$ directly into the output equation to obtain $\mathrm{y}(\mathrm{t})$ :

$$
y(t)=c e^{a\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} c e^{a(t-\tau)} b u(\tau) d \tau+d u(t)
$$

$$
y(t)=c e^{a\left(t-t_{0}\right)} x_{0}+\int_{t_{0}}^{t} c e^{a(t-\tau)} b u(\tau) d \tau+d u(t)
$$

- We often like to characterize a system by its impulse response. This is obtained by setting $u(t)=\delta(t)$ under zero initial conditions, $x_{0}=0$ (the zero vector) at $t_{0}=0$ :

$$
\begin{aligned}
h(t) & =\int_{0^{-}}^{t} c e^{a(t-\tau)} b \delta(\tau) d \tau+d \delta(t) \\
& =c e^{a(t)} b+d \delta(t)
\end{aligned}
$$

- We used the sifting property of the impulse to pluck out the value of the integrated function at 0 . We can then use the impulse response to get the zero-state response output for any $u(t)$ :

$$
\begin{aligned}
\int_{0^{-}}^{t} c e^{a(t-\tau)} b u(\tau) d \tau+d u(t) & =\int_{0^{-}}^{t}\left[c e^{a(t-\tau)} b+d \delta(t-\tau)\right] u(\tau) d \tau \\
& =\int_{0^{-}}^{t} h(t-\tau) u(\tau) d \tau \\
& =h(t) * u(t)
\end{aligned}
$$

## From scalar solution to vector solution

So we obtained the solution to the scalar system,

$$
\begin{aligned}
& \dot{x}(t)=a x(t)+b u(t) \quad x\left(t_{0}\right)=x_{0} \\
& y(t)=c x(t)+d u(t)
\end{aligned}
$$

using the integrating factor,

$$
e^{-a\left(t-t_{0}\right)}
$$

resulting in,

$$
x(t)=\underbrace{e^{a\left(t-t_{0}\right)} x_{0}}_{\mathbf{x}_{\mathrm{zi}}(\mathrm{t})}+\underbrace{\int_{t_{0}}^{t} e^{a(t-\tau)} b u(\tau) d \tau}_{\mathbf{x}_{\mathbf{z s}}(\mathrm{t})}
$$

The solution to the vector system,

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}} \\
& \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{aligned}
$$

can be obtained in the exact same way using the integrating factor,

$$
e^{-A\left(t-t_{0}\right)}
$$

resulting in,

$$
x(t)=\underbrace{e^{A\left(t-t_{0}\right)} x_{0}}_{\mathbf{x}_{\mathrm{zi}}(\mathrm{t})}+\underbrace{\int_{t_{0}}^{t} e^{A(t-\tau)} b u(\tau) d \tau}_{\mathbf{x}_{\mathrm{zs}}(\mathrm{t})}
$$

## But what the hell is this?

$$
e^{-A\left(t-t_{0}\right)}
$$

