

Defining Equation for Eigenvectors and Eigenvalues

inding Eigenvalues

 $A\vec{v} = \lambda\vec{v}$

How do you find the eigenvalues for a matrix in general?

Recall: Let $B = A - \lambda I$ be an $n \times n$ matrix. Then

Nul
$$B = \vec{0} \iff B$$
 invertible $\iff \det B \neq 0$.

Translation: let $\lambda \in \mathbb{R}$ and $B = A - \lambda I$.

 λ is eigenvalue for $A \iff \operatorname{Nul} B \neq \vec{0} \iff \det B = 0.$

In other words, the eigenvalues of A are exactly the values λ for which det $(A - \lambda I) = 0!$

Since det $(A - \lambda I)$ is a polynomial, this is a familiar problem.

3/18

Similar Matrices and Diagonalizatio

Finding Eigenvalues Motivation Similar Matrices and Diagonalization Example: Find all eigenvalues for the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$. Answer: Find values of λ for which $det(A - \lambda I) = det \begin{bmatrix} 3 - \lambda & 1 \\ 2 & 2 - \lambda \end{bmatrix} = 0$ In other words, find roots of the quadratic equation $\lambda^2 - 5\lambda + 4 = 0$. We've known since high school how to do this! $\lambda^2 - 5\lambda + 4 = (\lambda - 4)(\lambda - 1) = 0 \implies \lambda = 1 \text{ or } 4.$

Check: Both $A - 4I = \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix}$ and $A - I = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ clearly have non-empty null spaces.

Matrices and Diagonalization

inding Eigenvalues

Example: Find all eigenvalues and corresponding eigenvectors for the matrix $A = \begin{bmatrix} 5 & 6 \\ 3 & -2 \end{bmatrix}$.

Solution:

Step 1: Find the eigenvalues. That is, find all the solutions to the characteristic equation for *A*:

$$\det(A - \lambda I) = \det \begin{bmatrix} 5 - \lambda & 6 \\ 3 & -2 - \lambda \end{bmatrix} = 0$$

Calculate:

det
$$\begin{bmatrix} 5-\lambda & 6\\ 3 & -2-\lambda \end{bmatrix} = (5-\lambda)(-2-\lambda) - 18 = \lambda^2 - 3\lambda - 28$$

Note that $\lambda^2 - 3\lambda - 28$ is called the characteristic polynomial of A.

$$\lambda^2 - 3\lambda - 28 = (\lambda - 7)(\lambda + 4) = 0 \iff \lambda = 7 \text{ or } \lambda = -4$$

Hence eigenvalues are $\lambda = 7$ and $\lambda = -4$.

Finding Eigenvalues	Motivation	Similar Matrices and Diagonalization
Step 3: Calcut This is the nu $A - (-4)$	late eigenvectors for eigenva	alue $\lambda = -4$: $\begin{bmatrix} 9 & 6 \\ 3 & 2 \end{bmatrix} \rightarrow_{reduce} \begin{bmatrix} 9 & 6 \\ 0 & 0 \end{bmatrix}$ ector $\begin{bmatrix} -\frac{2}{3} \\ 1 \end{bmatrix}$
		7 (10

Step 2: Calculate eigenvectors for eigenvalue $\lambda = 7$:

This is the null space of

$$A - 7 \cdot I = \begin{bmatrix} 5 - 7 & 6 \\ 3 & -2 - 7 \end{bmatrix} = \begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix} \rightarrow_{reduce} \begin{bmatrix} -2 & 6 \\ 0 & 0 \end{bmatrix}$$

Solution: Eigenspace is all multiples of vector $\begin{bmatrix} 3\\1 \end{bmatrix}$

Check:

$$\begin{bmatrix} 5 & 6 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 21 \\ 7 \end{bmatrix} = 7 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

6/18

 Finding Eigenvalues
 Motivation
 Similar Matrices and Diagonalization

 Example: Find the eigenvalues for the matrix $A = \begin{bmatrix} 3/2 & -13 \\ 1/4 & -3/2 \end{bmatrix}$.
 .

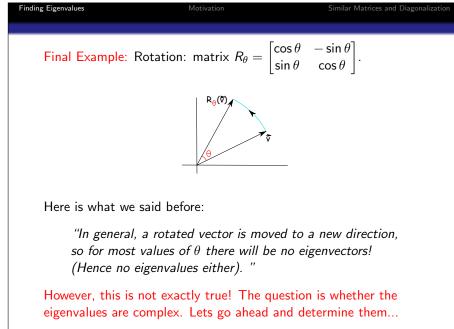
 $\det(A - \lambda I) = \lambda^2 + 1.$

There are two complex eigenvalues $\pm i$. We solve for the eigenspace in the usual way, although the matrices A - iI and A + iI will now be complex.

7/18

5/18

8/18



9/18

inding Eigenvalues

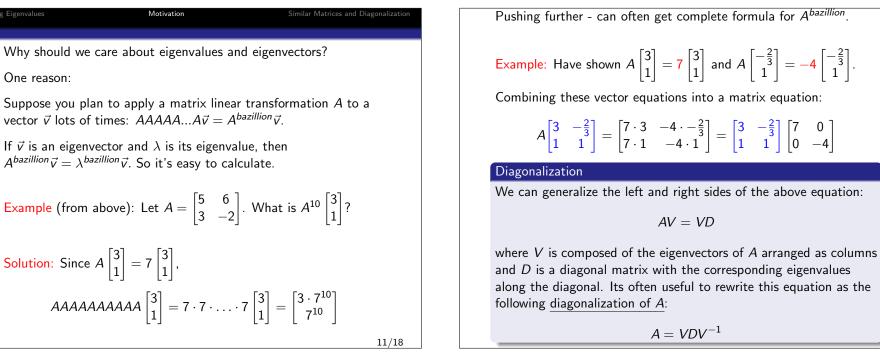
$$R_{\theta} - \lambda I = \begin{bmatrix} \cos \theta - \lambda & -\sin \theta \\ \sin \theta & \cos \theta - \lambda \end{bmatrix}$$
$$\det(R_{\theta} - \lambda I) = (\cos \theta - \lambda)^{2} + \sin^{2} \theta$$
$$= \cos^{2} \theta - 2\cos \theta \lambda + \lambda^{2} + \sin^{2} \theta$$
$$= \lambda^{2} - 2\cos \theta \lambda + 1$$

Setting this to 0 and solving for λ we get,

$$\begin{array}{rcl} \lambda & = & \displaystyle \frac{2\cos\theta\pm\sqrt{4\cos^2\theta-4}}{2} \\ \lambda & = & \displaystyle \cos\theta\pm\sqrt{\cos^2\theta-1} \end{array}$$

Try some particular values of θ . In general, the eigenvalues will be complex whenever $\cos^2 \theta < 1$. So we only get real eigenvalues when θ is an integer multiple of π .

10/18



One reason:

Suppose you plan to apply a matrix linear transformation A to a vector \vec{v} lots of times: $AAAAA...A\vec{v} = A^{bazillion}\vec{v}$.

If \vec{v} is an eigenvector and λ is its eigenvalue, then $A^{bazillion}\vec{v} = \lambda^{bazillion}\vec{v}$. So it's easy to calculate.

Example (from above): Let
$$A = \begin{bmatrix} 5 & 6 \\ 3 & -2 \end{bmatrix}$$
. What is $A^{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$?

Solution: Since
$$A \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 7 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
,
 $AAAAAAAAA \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 7 \cdot 7 \cdot \ldots \cdot 7 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \cdot 7^{10} \\ 7^{10} \end{bmatrix}$

Finding Eigenvalues

Motivation

Similar Matrices and Diagonalization

Returning to our example, we can compute A^{1000} using the relation $A = VDV^{-1}$.

If we denote
$$\begin{bmatrix} 3 & -\frac{2}{3} \\ 1 & 1 \end{bmatrix} = V$$
 we have

$$AV = V \begin{bmatrix} 7 & 0 \\ 0 & -4 \end{bmatrix} \implies A = V \begin{bmatrix} 7 & 0 \\ 0 & -4 \end{bmatrix} V^{-1} \implies$$

$$A^{1000} = V \begin{bmatrix} 7^{1000} & 0 \\ 0 & (-4)^{1000} \end{bmatrix} V^{-1}$$

But why would anyone ever need to calculate A^{1000} ?

13/18

Finding EigenvaluesMotivationSimilar Matrices and DiagonalizationIn other words, $\begin{bmatrix} w_1 \\ r_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{2}{5} \\ -\frac{1}{10} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} w_0 \\ r_0 \end{bmatrix}.$

If the same model applies the following year, then after that second year there are w_2 wolves & r_2 rabbits where

$$\begin{bmatrix} w_2 \\ r_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{2}{5} \\ -\frac{1}{10} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} w_1 \\ r_1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{2}{5} \\ -\frac{1}{10} & \frac{3}{2} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \frac{1}{2} & \frac{2}{5} \\ -\frac{1}{2} & \frac{2}{5} \\ -\frac{1}{10} & \frac{3}{2} \end{bmatrix} \begin{pmatrix} w_0 \\ r_0 \end{bmatrix} \end{pmatrix}$$

In other words,

$$\begin{bmatrix} w_2 \\ r_2 \end{bmatrix} = A^2 \begin{bmatrix} w_0 \\ r_0 \end{bmatrix}$$

Example Suppose w_0 is the number of wolves in the forest at time t = 0,

 r_0 is the number of rabbits. Consider the following simple biological model:

- Wolves make more wolves. If there are rabbits to eat, they make even more wolves!
- Similarly rabbits make (lots) more rabbits. But rabbits also get eaten by wolves.

So, if in year zero there are w_0 wolves & r_0 rabbits, then next year, the number of wolves w_1 and rabbits r_1 might be given by:

$$w_1 = \frac{w_0}{2} + \frac{2r_0}{5} \tag{1}$$

$$r_1 = -\frac{w_0}{10} + \frac{3r_0}{2} \tag{2}$$

The constants $\frac{1}{2}$, $\frac{2}{5}$, $\frac{-1}{10}$, and $\frac{3}{2}$ would come from biological experiments.

In general, after k years we have w_k wolves & r_k rabbits: $\begin{bmatrix} w_k \\ r_k \end{bmatrix} = A^k \begin{bmatrix} w_0 \\ r_0 \end{bmatrix}$ Characteristic equation of $\begin{bmatrix} \frac{1}{2} & \frac{2}{5} \\ -\frac{1}{10} & \frac{3}{2} \end{bmatrix}$ is $\lambda^2 - 2\lambda + \frac{79}{100}$. Roots of $\lambda^2 - 2\lambda + \frac{79}{100} = 0$ can be found via the quadratic formula: $\lambda = \frac{2 \pm \sqrt{4 - \frac{79}{25}}}{2} = 1 \pm \sqrt{\frac{21}{100}}$ Now find eigenvectors for each, and assemble into the matrix V.

$$\mathcal{A}^{1000} = \mathcal{V} \begin{bmatrix} (1 + \sqrt{\frac{21}{100}})^{1000} & 0 \\ 0 & (1 - \sqrt{\frac{21}{100}})^{1000} \end{bmatrix} \mathcal{V}^{-1}$$

Multiply by the initial condition vector to get the number of wolves and rabbits after 1000 years!

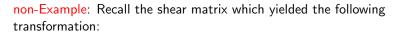
15/18

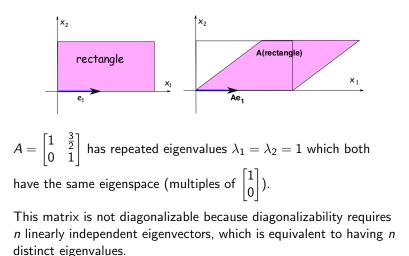
Finding Eigenvalues

Similar Matrices and Diagonalization

nding Eigenvalues

18/18





17/18

Definition

If A is a square matrix and there is an invertible matrix P so that $A = PBP^{-1}$ then A and B are similar.

Two matrices, A and B, which are similar will share the same eigenvalues.

In the diagonalization $A = VDV^{-1}$ the matrices A and D are similar by design.

Question: When can you diagonalize A?

Theorem

Answer: Can diagonalize A if and only if A has n linearly independent eigenvectors.