

The eigenvalues for a triangular matrix are the entries of the diagonal.

Reason: Suppose A is an upper triangular matrix and $a_{k k}$ is one of the diagonal entries. Then $B=A-a_{k k} l$ is an upper triangular matrix with a 0 in the $k^{\text {th }}$ diagonal spot.

So B is in echelon form with (at least) x_{k} as a free variable. The existence of a free variable means the null space is not empty. The null space of B is exactly the eigenspace for the eigenvalue $a_{k k}$.

How do you find the eigenvalues for a matrix in general?

Recall: Let $B=A-\lambda /$ be an $n \times n$ matrix. Then

$$
\text { Nul } B=\overrightarrow{0} \Longleftrightarrow B \text { invertible } \Longleftrightarrow \operatorname{det} B \neq 0
$$

Translation: let $\lambda \in \mathbb{R}$ and $B=A-\lambda /$.

$$
\lambda \text { is eigenvalue for } A \Longleftrightarrow \operatorname{Nul} B \neq \overrightarrow{0} \Longleftrightarrow \operatorname{det} B=0 .
$$

In other words, the eigenvalues of A are exactly the values λ for which $\operatorname{det}(A-\lambda I)=0$!

Since $\operatorname{det}(A-\lambda I)$ is a polynomial, this is a familiar problem.

Finding Eigenvalues

Example: Find all eigenvalues for the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 2\end{array}\right]$.
Answer: Find values of λ for which

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 1 \\
2 & 2-\lambda
\end{array}\right]=0
$$

In other words, find roots of the quadratic equation $\lambda^{2}-5 \lambda+4=0$.

We've known since high school how to do this!

$$
\lambda^{2}-5 \lambda+4=(\lambda-4)(\lambda-1)=0 \Longrightarrow \lambda=1 \text { or } 4
$$

Check: Both $A-4 I=\left[\begin{array}{cc}-1 & 1 \\ 2 & -2\end{array}\right]$ and $A-I=\left[\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right]$ clearly have non-empty null spaces.

Example: Find all eigenvalues and corresponding eigenvectors for
the matrix $A=\left[\begin{array}{cc}5 & 6 \\ 3 & -2\end{array}\right]$.
Solution:
Step 1: Find the eigenvalues. That is, find all the solutions to the characteristic equation for A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
5-\lambda & 6 \\
3 & -2-\lambda
\end{array}\right]=0
$$

Calculate:

$$
\operatorname{det}\left[\begin{array}{cc}
5-\lambda & 6 \\
3 & -2-\lambda
\end{array}\right]=(5-\lambda)(-2-\lambda)-18=\lambda^{2}-3 \lambda-28
$$

Note that $\lambda^{2}-3 \lambda-28$ is called the characteristic polynomial of A.

$$
\lambda^{2}-3 \lambda-28=(\lambda-7)(\lambda+4)=0 \Longleftrightarrow \lambda=7 \text { or } \lambda=-4
$$

Hence eigenvalues are $\lambda=7$ and $\lambda=-4$.

Step 2: Calculate eigenvectors for eigenvalue $\lambda=7$:
This is the null space of

$$
A-7 \cdot I=\left[\begin{array}{cc}
5-7 & 6 \\
3 & -2-7
\end{array}\right]=\left[\begin{array}{cc}
-2 & 6 \\
3 & -9
\end{array}\right] \rightarrow_{\text {reduce }}\left[\begin{array}{cc}
-2 & 6 \\
0 & 0
\end{array}\right]
$$

Solution: Eigenspace is all multiples of vector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$
Check:

$$
\left[\begin{array}{cc}
5 & 6 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
21 \\
7
\end{array}\right]=7\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Example: Find the eigenvalues for the matrix $A=\left[\begin{array}{cc}3 / 2 & -13 \\ 1 / 4 & -3 / 2\end{array}\right]$
$\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.

There are two complex eigenvalues $\pm i$. We solve for the eigenspace in the usual way, although the matrices A-il and $A+i l$ will now be complex.

Final Example: Rotation: matrix $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Here is what we said before:
"In general, a rotated vector is moved to a new direction, so for most values of θ there will be no eigenvectors! (Hence no eigenvalues either). "

However, this is not exactly true! The question is whether the eigenvalues are complex. Lets go ahead and determine them..

$$
\begin{aligned}
R_{\theta}-\lambda I & =\left[\begin{array}{cc}
\cos \theta-\lambda & -\sin \theta \\
\sin \theta & \cos \theta-\lambda
\end{array}\right] \\
\operatorname{det}\left(R_{\theta}-\lambda I\right) & =(\cos \theta-\lambda)^{2}+\sin ^{2} \theta \\
& =\cos ^{2} \theta-2 \cos \theta \lambda+\lambda^{2}+\sin ^{2} \theta \\
& =\lambda^{2}-2 \cos \theta \lambda+1
\end{aligned}
$$

Setting this to 0 and solving for λ we get,

$$
\begin{aligned}
& \lambda=\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2} \\
& \lambda=\cos \theta \pm \sqrt{\cos ^{2} \theta-1}
\end{aligned}
$$

Try some particular values of θ. In general, the eigenvalues will be complex whenever $\cos ^{2} \theta<1$. So we only get real eigenvalues when θ is an integer multiple of π.

Pushing further - can often get complete formula for $A^{\text {bazillion }}$.

Example: Have shown $A\left[\begin{array}{l}3 \\ 1\end{array}\right]=7\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $A\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]=-4\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]$.
Combining these vector equations into a matrix equation:

$$
A\left[\begin{array}{cc}
3 & -\frac{2}{3} \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
7 \cdot 3 & -4 \cdot-\frac{2}{3} \\
7 \cdot 1 & -4 \cdot 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -\frac{2}{3} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
7 & 0 \\
0 & -4
\end{array}\right]
$$

Diagonalization

We can generalize the left and right sides of the above equation:

$$
A V=V D
$$

where V is composed of the eigenvectors of A arranged as columns and D is a diagonal matrix with the corresponding eigenvalues along the diagonal. Its often useful to rewrite this equation as the following diagonalization of A :

$$
A=V D V^{-1}
$$

Example Suppose w_{0} is the number of wolves in the forest at time $t=0$,
r_{0} is the number of rabbits. Consider the following simple biological model:

- Wolves make more wolves. If there are rabbits to eat, they make even more wolves!
- Similarly rabbits make (lots) more rabbits. But rabbits also get eaten by wolves

So, if in year zero there are w_{0} wolves \& r_{0} rabbits, then next year, the number of wolves w_{1} and rabbits r_{1} might be given by:

$$
\begin{align*}
w_{1} & =\frac{w_{0}}{2}+\frac{2 r_{0}}{5} \tag{1}\\
r_{1} & =-\frac{w_{0}}{10}+\frac{3 r_{0}}{2} \tag{2}
\end{align*}
$$

The constants $\frac{1}{2}, \frac{2}{5}, \frac{-1}{10}$, and $\frac{3}{2}$ would come from biologica experiments.

If the same model applies the following year, then after that second year there are w_{2} wolves \& r_{2} rabbits where

$$
\left[\begin{array}{l}
w_{2} \\
r_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{2}{5} \\
-\frac{1}{10} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
r_{1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{2}{5} \\
-\frac{1}{10} & \frac{3}{2}
\end{array}\right]\left(\left[\begin{array}{cc}
\frac{1}{2} & \frac{2}{5} \\
-\frac{1}{10} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
r_{0}
\end{array}\right]\right)
$$

In other words,

$$
\left[\begin{array}{c}
w_{2} \\
r_{2}
\end{array}\right]=A^{2}\left[\begin{array}{c}
w_{0} \\
r_{0}
\end{array}\right]
$$

In general, after k years we have w_{k} wolves \& r_{k} rabbits

$$
\left[\begin{array}{c}
w_{k} \\
r_{k}
\end{array}\right]=A^{k}\left[\begin{array}{c}
w_{0} \\
r_{0}
\end{array}\right]
$$

Characteristic equation of $\left[\begin{array}{cc}\frac{1}{2} & \frac{2}{5} \\ -\frac{1}{10} & \frac{3}{2}\end{array}\right]$ is $\lambda^{2}-2 \lambda+\frac{79}{100}$.
Roots of $\lambda^{2}-2 \lambda+\frac{79}{100}=0$ can be found via the quadratic formula:

$$
\lambda=\frac{2 \pm \sqrt{4-\frac{79}{25}}}{2}=1 \pm \sqrt{\frac{21}{100}}
$$

Now find eigenvectors for each, and assemble into the matrix V.

$$
A^{1000}=V\left[\begin{array}{cc}
\left(1+\sqrt{\frac{21}{100}}\right)^{1000} & 0 \\
0 & \left(1-\sqrt{\frac{21}{100}}\right)^{1000}
\end{array}\right] V^{-1}
$$

Multiply by the initial condition vector to get the number of wolves and rabbits after 1000 years!

Definition

If A is a square matrix and there is an invertible matrix P so that $A=P B P^{-1}$ then A and B are similar.
Two matrices, A and B, which are similar will share the same eigenvalues.
In the diagonalization $A=V D V^{-1}$ the matrices A and D are similar by design.

Question: When can you diagonalize A ?

Theorem

Answer: Can diagonalize A if and only if A has n linearly independent eigenvectors.
non-Example: Recall the shear matrix which yielded the following transformation:

$A=\left[\begin{array}{ll}1 & \frac{3}{2} \\ 0 & 1\end{array}\right]$ has repeated eigenvalues $\lambda_{1}=\lambda_{2}=1$ which both
have the same eigenspace (multiples of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$).
This matrix is not diagonalizable because diagonalizability requires n linearly independent eigenvectors, which is equivalent to having n distinct eigenvalues.

