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Mapping the s-plane onto the z-plane

* We're almost ready to design a controller fora DT
system, however we willhave to consider where
we would like to position the poles

* We generally understand how to position
desirable poles inthe s-plane
— Although this does remains somewhat of a “black art”
as there are various arbitrary choices and rules-of-
thumb at play
* If we understand how to position poles in the z-
plane we can do direct digital design.
Alternatively, we can position poles in the s-plane
and then find out where theylie inthe z-plane.

* Wehave already seen that polesin thes-plane and z-

planeare related by

5y = 6ST
We'll consider particular mappings from parts of the
s-plane. We have already seen that thej! axis
correspondsto theunit circlein the z-plane. In the

following, s=0 + jw and w =0.
z = ?ST — eo'Teij — ij'[" =1 f(L)T

Fundamentally, thereis alimitation on thesignal
frequency that can berepresented by the z-
transform. That limitismw =w,/2 wherew,=2n / T.
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* That portion of the j! axis which liesin the range [wy/2, jo/2] maps onto
the unit circle.

* So poles on the unit circle in the z-plane correspond to pure sinusoids and
therefore signify a marginally stable system.

* As we have already seen, poles inside the unit circle correspond to
exponentially decaying sinusoids. If all poles lie within the unit circlethen
we have asymptotic stability. Poles outside the unit circle correspond to
exponentially growing sinusoids, and therefore instability.
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For s = 0 + jw if 0 isheld constant (lets say we setittoa value of ;) and w is
allowed to vary we get

7 = e(}"{lrejw'l‘ — e(r,’/‘/w'r
A

This corresponds to vertical lines in the s-plane andcircles in the z-plane
(including the unit circle).
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What if we do the opposite? Thatis, fors = 6+ jo we hold w constant (at w;)
if o is allowed to vary allowed to vary we get

z=e"Tel T = 7T /(i T)

This corresponds to horizontal lines in the s-plane and rays emanating from
the origin in the z-plane.
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Lets consider pairs of poleslocated at s = 0 +jw. We know that such a pole pair
corresponds to a term of the form ke ! cos(wt + ). We can also define this pair of
poles in polar coordinates as (5 +6)as below:

sT

P — Lol tjal T
2= imgrjy = e/l = go7 /twl =r/+0

In particular we would like to position the poles ofa second-order system which have
the following locations:

s12 = Lo, £ jo, V1 - ¢

Now translate to the z-plane:

719 = e = e loTptjo,TVI=E ko

S=815

where r = ¢ and6 = w,TV1 -

The relationships between z-plane pole locations and (T, ) is somewhat complex,

geometrically:
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Figure 8.4

Natural frequency (solid color) and damping loci (light color) in the z-plane; the portion below the Re(z)-axis (not
shown) is the mirror image of the upper half shown
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These relationships between the locations of a pole pair at (; +0) in the z-plane and
second order system parameters (T, w,) allow usthen to relate pole locationsto ‘boss
parameters” such as %0S and settling time.

Example:

We have a DT system with the following closed-loop characteristic polynomial:

2= 240632 = (z - 05— j(0.618)(z — 0.5 + j0.618) = 0

Get the pole locations inthe z-plane in terms of (5 +0) then obtain the 2™ order
parameters (in this example T = 1s which is rather slow):

212 = 0.5 £ j0.618 = 0.795 £ + 0.890(rad) = r£+6
lel((k795)

{= ——————— = 0250
V' In 2(0.795) + (0.890)>

|
W, = T V 1n %(0.795) + (0.890)* = 0.919

The examples below illustrate 4 different configurations of s-plane and correspondingz-
plane pole locations and the resulting signals produced.
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The following plot from Franklin gives a similar picture:
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Digital State Feedback Design

» State feedback can be applied to sampled data
systems in almost exactly the same way as for
CT systems
— The only real differenceis that we place

eigenvaluesin the z-plane, not the s-plane

* We proceed by example. Assume we have the
following servomotor system (again):

Uls) / Zero- 10 Y(s)
——3|  Order ' o —

s(s+1)

T=0.1s Hold
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In the previous set of notes we developed the following discretized state-space
model for this system:

1 0.0952 0.0484
x(k +1) = e i
. L) 0.905 J’““ N stz J’”“

y(k) =1 0]x(k)
x1(k) represents the angle of the motor shaft (measureable by encoder count).

% (k) represents the shaft speed (measureable by atachometer, rate gyro, or
by rate of encoder counts).

It is important to consider whether the state variables are measureable
because otherwise full-state feedback cannot be applied.

Here is our usual picture of astate feedback controller:

Y

L

This example differs in that it has been discretized, butalsoin that the goal is to set the
motor’s shaft angle to zero. That makes this controller a regulator. A regulatorisa
controller or compensator that works to move one or all state variables to zero. So we
can say there is no r(t), or equivalently that r(t) = 0.

In regulator design (for n=2) the input to the plant is defined as

k) = =Kuxi(k) = Koxo(k) = —Kx(k)

100952 0.0484
x(k +1) = .048 :
) L) 0.905 Jx”‘) + [()_952 }m(/\)

y(k) =1 0]x(k)

Problem specification: Reduce settling time to 4 seconds. (Nothing else is mentioned
which means we don’t particularly care about other specifications such as %0S).

Start by looking at the open-loop system and its characteristics. We will need the
current characteristic polynomial (computed as usual except that we use |zI-A|

instead of |sl —Al).

a(z) = |21 — Al = (2 — 1)(z — 0.905) = 22 — 1.9052 + 0.905

The design process that follows goes from a unity feedback system (which isidentical
to state feedback with K_1 =1, K_2=0). That unity feedback system has the following
characteristic polynomial:

auf(z) = 22 = 1.92 +0.91

The eigenvalues of the unity feedback system can be obtained from the quadratic
formula then converted to polar form:

212 = 0.954 /4 0.091rad = r/+6

212 = 0954 /£ 0.091rad = r

Work out the second-order parameters:

—Inr —1n(0.954)
e = e = 0.46
Vin?r + ¢’ V In?(0.954) + (0.091)?

=

o, = =V in? + ¢> =10246

N

Current settling time:
4
Cwn
Since we don’t care about %0S lets just change w,. To bring the desired settling time
down to 4 seconds we modify oy, and then get the desired pole locations:
4
’

W= =27

T =8.47

5T PR i TV —2 g
.27 ()sll.\:z\m = e tonlgtiodd =8 = re*/®

N2 = 0.905/£ 11.04° = 0.888 + j0.173
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N2 = 0.905/4 11.04° = 0.888 + j0.173
Now we can get the desired characteristic polynomial:
(z — 0.888 = jO.173)(z — 0.888 + j0.173) = 7z — 1.776z + 0.819

We continue to design the K gain vector in the usual way. The system is not in CCF so
we use Bass-Gura and obtain K =[0.445 0.113].

The following shows the resulting improvement in system response (x(0)=[1 0]T).

Linear Simulation Results
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FIGURE 143
Hardwate implementation for the design of Example 14.1
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