Digital Control:
Fundamentals

ENGI 7825: Control Systems |
Andrew Vardy

Introduction

So far we have considered only continuous-time (CT) systems.
However, computers are very often incorporated into modern control
systems. Computers are discrete-time (DT) components.
Computers have the following advantageous characteristics for
control systems:

— They continuously grow bothfaster and cheaper; Microcontrollers
(complete computer on one IC) often cost < $5

— Fully customizable through software

— Operation is static and largely invariant to environmental conditions
We can contrast digital computers with analog electronic components
(e.g. resistors, inductors, capacitors, op-amps

— Not easily customizable once installed and may deviate from specs

— Affected by variations in temperature

— Produce analog (i.e. CT) signals which are quite susceptible to noise

Notation

* The material to come on Digital Control comes from
different sources:
— “Feedback Control of Dynamic Systems”, 6% Edition, by Franklin,
Powell, and Emami-Naeini (Sections 8.1, 8.2)
— “Feedback Control Systems”, 5t Edition, by Phillips and Parr
(Sections 11.6, 11.7,11.8, 12.9, 13.4, 14.2)
— “Control Systems Engineering”, 5t Edition, by Nise (z-transform
tables)
— “Linear System Theory and Design”, 4" Edition by Chen (Section
4.2)
* The notation will consequently vary:
— Quantities with unqualified references to time are continuous-
time: e.g. u(t)
— Quantities which refer tointeger multiples of the sampling
period, T, are discrete samples: e.g. u(kT)
* Often the Tis dropped, leaving an index k: u(k)
* Sometimes square brackets are used for discrete-time signals: u[k]

Discrete-Time Systems

u(t) y(r)

0 ‘ 0 [
u(r) Black ()
—

—
ulk] ulk] box VK] VK]

o
w
~
o

12345k

Discrete-time signals are sequences of numbers (e.g. u[k] and y[k]) above. They may
be sampled from CT signals (as above) or they may be produced by inherently disaete
processes.

8/5/16

Sampled Data Systems

* Asystem with both CT and DT components is often
referred to as a sampled data system

In practice, most control systems are sampled data

systems

* An analog-to-digital (A/D) converter samples a

physical variable and translatesitinto a digital

number

— We usually assume this occurs at a fixed sampling
period, T

In most sampled data systems, a digital controller

replaces a continuous controller as shown...

Figure 8.1

Block diagrams for a
basic control system:
(a) continuous system;
(b) with a digital
computer

Continuous controller = Plant
Gls) ¥
Sensor
1 -

Plant

(a)

G5y

I" Sensor.

1

by

* If theinputis CT then r(t) must be sampled as shown. However, the
input will often be DT in which case no sampling is required on the

input.

The D/A converter converts the controller outputto an
analog signal which is held until the next period of
durationT. Thisis known as zero-order hold (ZOH).
ZOH incurs an average delay of T/2.

Figure 8.2 s

The delay due to the
hold operation

Continuous control, u(r)

* Thisdelayisonereason we generally wish toincrease
the frequency of the digital controller’s operation.

Fundamental Differences

* CT systems are governed by differential equations

* For DT systems the notion of a derivativeis not so
well defined; DT systems are governed by difference
equations

* The followingisageneral 2" order difference
equation:

y(k) = —ayylk — 1) — aavlk — 2) -+ bou(k) + byulk — 1) + bau(k — 2)

* The “new value” at y(k) is obtained from the past
values of y(k-1) and y(k-2) as well as current and past
values of u.

8/5/16

Motivation for the Z-Transform

* Why did we ever start using the Laplace
Transform (LT) for control systems?

— The LT simplifies the treatment of derivatives,
allowing differential equations to be easily solved
and allowing transfer functionsto be found

* Recall the definition of the LT and the crucial
identity that establishes the LT of a derivative
under zero initial conditions:

LY} =F© = [roe L@} = sF(s)

Definition of LT Derivative property of LT

Z-Transform

The z-transform is the counterpart of the Laplace
transform for DT systems. Itis defined as follows:
Zf)=F@y =) [l
k=0
Note that k is an index referring to discrete sample times.
Like s, zis a complex variable.
Analogous to the derivative property of the LT we have:
Z{fk— D} =z"'F(2)
This allows us to turn difference equations into transfer
functions in the same way as the derivative property in
the Laplace domain.

The Transfer Function of a DT System

* We can find the transfer function of a DT system by using the
z-transform. Consider again the general second-order
difference equation:

y(k) = —ayylk — 1) — azytk — 2) + bou(k) + byu(k — 1) + bau(k — 2)
* Now apply Z{f(k — 1)} =z"'F(z)

Y(2) = (—aiz ! — aaz DY (@) + (b + b1z + bz HU(R)

Y() _bo+biz ! +bpz?
Uz l+az ' +az?

* Similar to LT we seldom use the raw definition of the z-
transform but make use of tables instead...

TABLE 12,1 Partial table of z- and s-transforms

fey FGs) F2) Sk
f Z -
u(t) - =1 u(KT)
5 -
1 Tz
2 ¢ - — kT
$= (z~1)
; n! . P z n
. #) A g =t e
1 z
—at L kT
4 e e r——T e
- o pdl_z] T eehT
Gra™ Ve |z =T
: L sin @l :
8. sin wt ST S L sinwkT
4ot 22 = 2zcoswl + 1
- B 7
cos wt Tt cosawkT
w r
e sin ot TR W - ¢ 4T sin kT
(s+ay + o’ 2
s+a
EA e eos wt e = B, e~ eos wkT
(s+a)” + o 2

8/5/16

TABLE 13.2 z-transform theorems

Theorem Name
1 {af(n)} = aF(z) Linearity theorem
2. H{ A1)+ £(1)}=Fi1(z) + Fa(2) Linearity theorem
3. e T f(1)} = F(e"z, Complex differentiation
4 2{f(t—nT)} =27"F(z) Real translation
_dF(2)

s) = -1

£0)= ‘Lﬂ; F(z) Initial value theorem

Complex differentiation

f(oo) = lim (1 — z71)F(z) Final value theorem
=1

Note: k7' may be substituted for 7 in the table.

This is perhaps the most important theorem for our purposes
and will more typically be written like this:

Z{f(k—n)} = 2"F(2)

Note that this property is defined for positive n. Ifn is negative
(i.e. positive time shift) then we have the following:

n—1
Z{f(k+n)} = 2" {F(:) -3 f(i)z’}

We will soon need to i=0

apply this theorem Z{f(]x + 1)} _ Z(F(Z) _ f(()))

forn=1:

Inverse z-Transform

In a somewhat similar fashion to the ILT, we can obtain the inverse
z-Transform using partial fraction expansion. In the s-domain the
terms corresponding to exponentials were of the form,

1 = e
s+a
In the z-domain we have,
z
—akT
7 _eaT ¢

Therefore we will try to reduce z-domain expressions into the
following form,

Az Bz
+
zZ— 1 zZ— 22

F(z) =

We require the z in the numerator. This can be achieved by
expanding F(z)/z instead of F(z), then multiplying by z...

e.g. Find the sampled time function corresponding to F(z).

0.5z
FE) = om0
We expand F(z)/z,

Fz) 0.5 __A B _ 25 25
z (z-05)(z-07) z-05 z-07 z-05 z-07

Therefore,
—2.5z 2.5z

F(z) =
(2) z—05 z-07
Apply the inverse z-Transform on each term,

f(kT) = —2.5(0.5)K +2.5(0.7)*

Notice that do not get f(t). We only get back its sampled values.

Discrete-Time State Space

The discrete-time (DT) state space representation is
of the following form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)
Thisis quite similar to the continuous-time (CT)

representation except that we have a shift in time as
opposed to aderivative

In CT we needed to handle higher-order derivatives
which was achieved by defining a stack of state
variables

In DT we can apply the same idea to handle larger
time shifts.

8/5/16

* Consider the following common form of difference
equation:
yk+n)+aylk+n—1)+ayk+n—2)+...+a,y(k+1)+ayk) = bu(k)
* Wecan assign the “base” variable y(k) as our first
statevariable and create further state variablesto
represent all subsequent time shifts:

-Tl(k) = U(k)
ak+1) = za(k)
zo(k+1) = z3(k)

Zoa(k+1) = zq(k)
ok +1) = —a1za(k) — asTn-1(k) — ... — anz1(k) + bu(k)

zi(k) = y(k)
zi(k+1) = z(k)
zo(k+1) = z3(k)

Zn-1(k+1) = zn(k)

To(k+1) = —a1Zn(k) — aszn-1(k) — ... — anz1(k) + bu(k)

* The final state space representation easily follows:

xy(k+1) 0 0 1 a1 (k) 0
1fz(k':+1) _ ’L'sz) N U (k)
salk+1) e et al _’i va(k) b
x1(k)
k) = [1 00 ... 0] “fk)
()

* Notice that this is in Controller Canonical Form (CCF)

Solution of the DT State Space Equations

* Considerjust the DT state space difference equation:

x(k + 1) = Ax(k) + Bu(k)
* Wewill assumethat x(0) and theinput u(k) are
known. Wecan solvefork=0,1, 2, ...
x(1) = Ax(0) + Bu(0)

x(2) = Ax(1) + Bu(1) = A[Ax(0) + Bu(0)] + Bu(l)
= A’x(0) + ABu(0) + Bu(1)

X(3) = Ax(2) + Bu(2) = A[A%(0) + ABu(0) + Bu(1)] + Bu(2)

= A%x(0) + A’Bu(0) + ABu(1) + Bu(2)

xX(n) = A'(0) + A" 'Bu(0) + A" *Bu(1) + --- + ABu(n — 2) + Bu(n — 1)

n-=1

x(n) = A"x(0) + > A" "“Bu(k)
k=0

n—1

x(n) = A"x(0) + 3 A" "FBu(k)
k=0

* Inthe CT solution to the state-space equation we found
something similar, only more exotic because it involved the
matrix exponential. Our approach then was to try using
Laplace to obtain an easier-to-compute solution. Here we do
the same, except we use the z-transform instead.

* First we restate the state-space difference equation:

x(k + 1) = Ax(k) + Bu(k)

* We rewrite this as individual row equations:

xitk + 1) = ayxy(k) + -+ ayx,(k) + byu(k) + - + by, (k)

Xn(k +1) = “nlxl(k) +oee+ ”lm-“n(k) + h/rlll!(k) +et bm‘”/'(k)

* Now take the z-transform...

8/5/16

xik + 1) = ayx(k) + -+ ayx,(k) + by (k) + - + by, (k)
xn(k +]) = “nlxl(k) +oeet Ll,,,,,\',,(k) + bn]”l(k) +oeeet bm'“r(k)

z-transform

[Xi(2) = x(0)] = ay Xy(2) + - + a4y, X, (2) + byUs(z) + -+ + by U(z)

2[Xu(2) = x0)] = 4,0 X1(2) + -+ + @ Xy (2) + buUs(2) + - + b U2)

Express as a vector-matrix equation and solve for X(z):
z[X(z) — x(0)] = AX(z) + BU(z)
[z — A]X(z) = zx(0) + BU(z)

X(2) = z[zl = A]"'x(0) + [zI — A]'BU(z)

n—1

x(n) = A"(0) + 3 A" "FBu(k)
k=0
X(z2) = z[zl = A]'%(0) + [z - A]'BU(z)

We can equate the time-domain solution (above left) and the z-transform solution
(above right) and denote @(k) = A« Notethat ®@(k) is the state transition matrix for
our discrete-time solution, but itis not the matrix exponential. Now we have an
alternative way of computing ®(k):

®(k) =5 (z]zl — A]Y) = AF
n-1

x(n) = &(n)x(0) + zd)(n -1 = k)Bu(k)
=]

Notice how closely this followed the derivation of the state-space solution in CT

Example
Consider the DT system with the following transfer function:
=T8O _ = .z
(2) = Uizy 2£2-3z+2 (@E-1)z-2)

We can determine the difference equation for this system and
then obtain the state-space equation

COVERED ON BOARD

[0
2 3JX(/\) + 1'1 J[t(‘k)

y(k) = [0 1]x(k)

’!x(k) + g?\ll(lx‘)

1
3 L

(k +1)=
X(Kk + =
L.,‘?

Ok) = 5 (z[z] — A = A*
v(k) = [0 1]x(k)

* Now that we have the state-space representation, we can
solve for Y(z) and then y(k):

““A}:E ::13}

a1 Tz-3
[z1 A]‘*:3,;3:+5!_ -2 .‘}

* Recall ourgeneral solution: X(z) = z[zl = A]"'x(0) + [z - A]'BU(z)
In this example we have x(0) =0 (after all we started with a
transfer function which implicitly assumes x(0) =0).

X(z) = [- A]'BU(2)

- L [:=3 1]fo]
-3z+2] -2 :JUJ[“
DRSS S |
> 3420 V@

8/5/16

X(z) = [21 = A]'BU(z)
oL [z=3 1]f0],
“Fomaal 2 e
S S 1 e

Lets assume we have a step input. The z-transform of the step function is
z/(z-1). We fill this into the above solution and into Y(z) = C X(z):

- DE

~3:+2)

Y(2)=CX(z) = [0 1]

(- 1) -32+2)

Applying partial fraction expansion and then the inverse z-transform:

Y(2) = 5 LS+ +
2 (z 1Y(z — 2) (z = 1) z-1
y(k) = —k — 2 + 2(2)F

The output is the sequence 0, 1, 4, 11, 26,...

Solution for Sampled Data Systems

* The solution just presented works for purely DT
systems, but what if the plantis CT? Therearea
couple of possibilities (we take the bolded path):

— Design controller in CT then translate to DT
* Using approximate mappings froms-domain to z-domain (e.g.
Tustin’s method, MPZ)
— Translate CT plant model to DT, then design controller
in DT
* Use approximate mappings from from s- to z- (as above)
* Or..

* Use the exact mapping for state-space representations we are
about to discuss

[We are following the solution presented in section 4.2 of
“Linear System Theory and Design” by Chen]
Assume we begin with a purely CT state-space representation
and its solution, developed earlier this term:

x(1) = Ax(¢) + Bu(z) !

¥(#) = Cx(¢) + Du() x(0) = Mx0) + /0 e Bu(e) e
The input u(t) will be produced by a computer and will be

held constant throughout each sample period: é":

w(t) = u(kT) = u[k] forkT <t < (k+)T & ot

We evaluate our CT solution at discrete time steps t = kT and t

=(k+1) T %

x[k] := x(kT) = **"x(0) +f AT =OBu(r) dr
0

k+1)T
x[k + 1] :=x((k + DT) = AEDTx(0) + / ACHDT=DBy () dr
0

kT
x[k] := x(kT) = **7x(0) +[AKTOBu(r) dt
0

(k+1)T
x[k + 11 :=x((k + DT) = A DTx(0) + / AEDT-DBy(7) dr
0

* We can re-write the second equation as follows and then
recognize that it contains the first:
kT
X[k + 1] = AT [eA"Tx(O) + / eA("T’”Bu(r)dz}

0

(k+1)T

+/ AKTHT—DBy(1) dt
kT

r
x[k 4+ 1] = A x[k] + ([e’“"da) Bulk]
0

¢ where o= kT + T-t. Wehave also substituted in our DT u[k]
which is constant within the integrated interval and can
therefore be factored out.

8/5/16

T
x[k + 1] = AT x[k] + (/ er‘da) Bulk]
0

* This is now a purely DT representation. We can establish a
correspondence between the given CT system (A, B, C, D) and
its DT equivalent (Ag, Bg, Cq, Da):

x[k + 11 = Ayx[k] + Byu[k]
ylk] = Cyx[k] + Dyulk]

T
Ay =T Bd=</ eAfdr)B C,=C D,=D
0

* The only practical issueis in computing B4. A few short
manipulations (see Chen for details) lead to the following:

B, =A"'(A;,—DB (if A is nonsingular)

Example
Assume we start with the following transfer function
(appropriate form for a servomotor):

10
s2+s

G(s) =

We can obtain the CT state space model quite directly

X(r) = {8 ‘1 ’x(r) + [

1

0
mJ““)
() = 1 0Jx(r)

Simply apply our derived DT equivalents. We'll saythatT =0.1s
Ay =M B,=A"'A;-DB C,=C D,=D

Unfortunately, Ais singular, so this doesn’t work! Phillips and
Parr present another method which does work, but we'll just
use Matlab.

Conversion from CT to DT using Matlab

* The function c2d converts from CT to DT state-space
representations. In fact you have been using this all along,
since Matlab is inherently DT (it runs on a computer).

c2d Converts continuous-time dynamic system to discrete time.

SYSD = c2d(SYSC,TS,METHOD) computes a discrete-time model SYSD with
sampling time TS that approximates the continuous-time model SYSC.
The string METHOD selects the discretization method among the following:

'zoh' Zero-order hold on the inputs

'foh' Linear interpolation of inputs

'impulse’ Impulse-invariant discretization

'tustin’ Bilinear (Tustin) approximation.

'matched’ Matched pole-zero method (for SISO systems only).

The default is 'zoh' when METHOD is omitted. The sampling time TS should
be specified in the time units of SYSC (see "TimeUnit" property).

* Forthe example we execute: [Ad, Bd] = c2d(A, B, 0.1)

1 0.0952 0.0484
x(k +1) = s 2
) L) 0.905 Jx 95 ((),953 }’”

y(k) =[1 0]x(k)

H
£

This is the step response of the origind

StepResponse

system. Note that the system is a DC

A motor so as we continue to applya
/ | step input it is quite reasonable for the
. | output (motor shaft angle) to increase
s 7 continually.
yd
P
e
Time (seconds)
Unes SmulonFesuts
M o —
e
J o
0 "Jf
.
. e
o

50 1

This is the step g e
gaf I

response of the ’;:f
converted DT o L
system. Note “r o~
that T=0.1s, so ot fx’j
the responses do b= @ o © o m o O
match. Discrete Time Steps

8/5/16

