Digital Control:
Fundamentals

ENGI 7825: Control Systems Il
Andrew Vardy

Introduction

* So far we have considered only continuous-time (CT) systems.
However, computers are very often incorporated into modern control
systems. Computers are discrete-time (DT) components.

 Computers have the following advantageous characteristics for
control systems:

— They continuously grow both faster and cheaper; Microcontrollers
(complete computer on one IC) often cost < S5

— Fully customizable through software
— Operation is static and largely invariant to environmental conditions

* We can contrast digital computers with analog electronic components
(e.g. resistors, inductors, capacitors, op-amps)

— Not easily customizable once installed and may deviate from specs
— Affected by variations in temperature
— Produce analog (i.e. CT) signals which are quite susceptible to noise

Notation

 The material to come on Digital Control comes from
different sources:
— “Feedback Control of Dynamic Systems”, 6% Edition, by Franklin,
Powell, and Emami-Naeini (Sections 8.1, 8.2)
— “Feedback Control Systems”, 5% Edition, by Phillips and Parr
(Sections 11.6,11.7,11.8,12.9,13.4, 14.2)
— “Control Systems Engineering”, 5t Edition, by Nise (z-transform
tables)
— “Linear System Theory and Design”, 4t Edition by Chen (Section
4.2)

* The notation will consequently vary:
— Quantities with unqualified references to time are continuous-
time: e.g. u(t)
— Quantities which refer to integer multiples of the sampling
period, T, are discrete samples: e.g. u(kT)

e Often theTisdropped,leaving anindex k: u(k)
 Sometimes square brackets are used for discrete-time signals: u[k]

Discrete-Time Systems

u(t) A y (1) L\'
\ ya

0|

<Y

u(t) Black y(1) R
ulk) ulk] box vk k]
s ‘LLLLL‘*
0 12 3 k 0 12 345 k

Discrete-time signals are sequences of numbers (e.g. u[k] and y[k]) above. They may
be sampled from CT signals (as above) or they may be produced by inherently discrete
processes.

Y

Sampled Data Systems

A system with both CT and DT componentsis often
referred to as a sampled data system

In practice, most control systems are sampled data
systems

An analog-to-digital (A/D) converter samples a
physical variable and translates it into a digital
humber

— We usually assume this occurs at a fixed sampling
period, T

In most sampled data systems, a digital controller
replaces a continuous controller as shown...

Figure 8.1

. Continuous controller -

Block diagrams for a P e ,__-_,,- RN

basic control system: D{g} F (1)
(a) continuous system; -yl
(b) with a digital
computer

()

oy = b B P R .
Dagital controller

————p

1EE- =

o

N T GrkDNL f _f’ hold Gs) —4—00

L]ﬂ k ||:'.-Zf...:__-_ - |

T Sampler

&“h—.[. T) [1.

e

(b)
e |fthe input is CT then r(t) must be sampled as shown. However, the
input will often be DT in which case no sampling is required on the
input.

* The D/A converter converts the controller output to an
analog signal which is held until the next period of
duration T. This is known as zero-order hold (ZOH).
ZOH incurs an average delay of T/2.

Figure 8.2

The delay due to the
hold operation

* This delay is one reason we generally wish to increase
the frequency of the digital controller’s operation.

Fundamental Differences

* CT systems are governed by differential equations

* For DT systems the notion of a derivative is not so
well defined; DT systems are governed by difference
equations

* The following is a general 2"? order difference
equation:

y(k) = —ayylk — 1) — axyv(lk — 2) + bou(k) + byu(k — 1) + bru(k — 2)

* The “new value” at y(k) is obtained from the past

values of y(k-1) and y(k-2) as well as current and past
values of u.

Motivation for the Z-Transform

 Why did we ever start using the Laplace
Transform (LT) for control systems?

— The LT simplifies the treatment of derivatives,
allowing differential equations to be easily solved
and allowing transfer functions to be found

* Recall the definition of the LT and the crucial
identity that establishes the LT of a derivative
under zero initial conditions:

L{f (D)} = F(s) = fu fe ™ dt LIF(O} = sF(s)

Definition of LT Derivative property of LT

Z-Transform

The z-transform is the counterpart of the Laplace
transform for DT systems. It is defined as follows:

Z(f()) = F(2) Lm-

Note that k is an index referring to discrete sample times.
Like s, z is a complex variable.

Analogous to the derivative property of the LT we have:

ZIftk— DN} =z""F@

This allows us to turn difference equationsinto transfer
functionsin the same way as the derivative propertyin
the Laplace domain.

The Transfer Function of a DT System

* We can find the transfer function of a DT system by using the
z-transform. Consider again the general second-order
difference equation:

y(k) = —ayvlk — 1) —azy(k — 2) + bou(k) 4+ byulk — 1) + brulk — 2)

* Nowapply Z{f(k — 1)} =z "F(z)

Yz} = {—H]f_i — 77 Eﬁlf’{E} + (bo + b7 by sz_E}UfE}

Y(z) bo + b1z ' + baz™?
U(z) 14az7! +ayz?2
e Similar to LT we seldom use the raw definition of the z-
transform but make use of tables instead...

TABLE 12,1 Partial table of z- and s-transforms
fio) F(s) F(z) fkT)
) i <
L. u(t) - mE wlKT)
2, r -I; Iz = kT
o (z—1)°
n! d" z
i il i 2 kTy"
e fim (1) | 2] (k1)
] z
~at e - ~akT
‘1. & . P + o - EM'EET e &
| A =
5 Po=dl ft. 1\ 4 N gkt
% (.’f it am -1 { E} da L ik E---QTJ (k?} =
: w zsinwl ;
B. sin wr e sin wkT
: 2 + w? 72 — 2zcoswl + 1
A - —
7 cos wt 5 1 2z — cos) cos wkT
= + w* 72— 2zcos wT + 1
{U - —ﬂ'T T "
3 e~ sin ot 5— e[SO ¢~ T sin kT
(s +a)” + z2* — 2ze T coswT + e—21
§+a il SRR T, o Sy
G. e~ Ueos wt 3 " —ze”" coswl e T cos wkT

2% — 2ze~Tcos T + e 247

TABLE 13.2 z-transform theorems

Theorem Name
1. z{af(t)} = aF(z) Linearity theorem
2. { filt) + (D)} =Fi1(2) + F2(2) Linearity theorem
3 {e T f(1)} = F(e*T2) Complex differentiation
Z{f(t —nT)} =z7"F(2) Real translation
dF(z
f{tf(0)} = -T2 dﬁ:) Complex differentiation

f(0) = lim F(z)

f(o0) = lim (1 - z7)F(2)

Initial value theorem

Final value theorem

Note: kT may be substituted for 7 in the table.

This is perhaps the most important theorem for our purposes

and will more typically be written like this:

Z{f(k—n)} = 2""F(z)

Note that this property is defined for positive n. If nis negative
(i.e. positive time shift) then we have the following:

n—1

Z{f(k+n)} =2"<F(z) = Y f(i)z""

We will soon need to

1=0

apply this theorem Z{f(k+1)} = 2(F(2) — f(0))

forn=1:

Inverse z- Transform

In a somewhat similar fashion to the ILT, we can obtain the inverse
z- Transform using partial fraction expansion. In the s-domain the
terms corresponding to exponentials were of the form,

L — g
s+ a
In the z-domain we have,
Z
—akT
e

Therefore we will try to reduce z-domain expressions into the
following form,

A B
Flz) = —— 4+ ==

Z — 21 Z — 29

We require the z in the numerator. This can be achieved by
expanding F(z)/z instead of F(z), then multiplying by z...

e.g. Find the sampled time function corresponding to F(z).

0.5z
(z—0.5)(z—0.7)

F(z) =

We expand F(z)/z,

F(z) 0.5 A N B —25+_25
z (z-05)(z—-07) z-05 z—-07 z—-05 z-0.7

Therefore,
—2.5z 2.5z

z—0.5 i z— 0.7
Apply the inverse z-Transform on each term,

F(z) =

f(kT) = —2.5(0.5)% + 2.5(0.7)*

Notice that do not get f(t). We only get back its sampled values.

Discrete-Time State Space

The discrete-time (DT) state space representation is
of the following form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)
This is quite similar to the continuous-time (CT)

representation except that we have a shift in time as
opposed to a derivative

In CT we needed to handle higher-order derivatives
which was achieved by defining a stack of state
variables

In DT we can apply the same idea to handle larger
time shifts.

* Consider the following common form of difference
equation:
y(k+n)+ayk+n—1D+ayk+n—2)+...+a,1yk+1) +ayk) = bu(k)
 We can assign the “base” variable y(k) as our first

state variable and create further state variables to
represent all subsequent time shifts:

Tn1(k+1) = z,(k)
zo(k+1) = —a1zp(k) — asxn1(k) — ... — anzi(k) + bu(k)

The final state space representation easily follows:

0 1 0 0
z1(k+1) 0 0] x1(k)
zo(k + 1) _ xo(k) N
R VI N I | R ()
[Cl(k>
yk) = [1 00 ... 0] x2§k>

Notice that this is in Controller Canonical Form (CCF)

Solution of the DT State Space Equations

* Consider just the DT state space difference equation:
xX(k + 1) = Ax(k) + Bu(k)
* We will assume that x(0) and the input u(k) are
known. We can solvefor k=0, 1, 2, ...

x(1) = Ax(0) + Bu(0)

X(2) = Ax(1) + Bu(l) = A[Ax(0) + Bu(0)] + Bu(l)
= A’x(0) + ABu(0) + Bu(1)

X(3) = Ax(2) + Bu(2) = A[A’x(0) + ABu(0) + Bu(1)] + Bu(2)
= A’x(0) + A’Bu(0) + ABu(1) + Bu(2)

x(n) = A"%(0) + A" 'Bu(0) + A" ’Bu(l) + --- + ABu(n - 2) + Bu(n — 1)

i
x(n) = A"(0) + D A" Bu(k)
k=0

11

x(n) = A"x(0) + ZA’P“‘I{B{;U{)

k=0

In the CT solution to the state-space equation we found
something similar, only more exotic because it involved the

matrix exponential. Ourapproach then was to try using
Laplace to obtain an easier-to-compute solution. Herewe do

the same, except we use the z-transform instead.
First we restate the state-space difference equation:

x(k + 1) = Ax(k) + Bu(k)
We rewrite this as individual row equations:

xilk + 1) = apx(k) + -+ apx, (k) + byu(ky + - + bu,(k)

Xplk + 1) = apx(k) + -+ a,,x,(k) + byu(k) + -+ b u(k)

Now take the z-transform...

Xi(k + 1) = apx(k) + -+ ayx,(k) + byuy(k) + - + by, (k)
xn(k + 1) = arzixl(k) +ooee Tt szx:z(k) + bi’f}{’il(k) + -+ bnrur(k)

z-transform

\
2[X1(2) = x)(0)] = a1 Xy(2) + - + a1, X,(2) + byUi(z) + -+ + b, U(z)

Z[X}z(‘z) o xn(o)] - ailei(z) +oe gme;’z(Z) + me’i(Z) RS mey(Z)

Express as a vector-matrix equation and solve for X(z):
z[X{(2) — x(0)] = AX(z) + BU(2)
[zl — A]X(z) = zx(0) + BU(z)

X(z) = z[zl = A]'x(0) + [z1 - A]'BU(z)

1

x(n) = A"x(0) + D A" " *Bu(k)
k=10

X(z) =

23

[<I = A]'x(0) + [zI — A]"'BU(z)

We can equate the time-domain solution (above left) and the z-transform solution
(above right) and denote ®(k) = Ak. Note that ®(k) is the state transition matrix for
our discrete-time solution, but it is not the matrix exponential. Now we have an
alternative way of computing ®(k):

Ok) = 5 (z[z1 — A]H = A*
Hi

x(n) = &(n)x(0) + Efb (n — 1 — k)Bu(k)

k=0

Notice how closely this followed the derivation of the state-space solution in CT

Example

* Considerthe DT system with the following transfer function:

Yz) Z
Uz Z#2-3z+2 (z-1)z-2)

G(z) =

 We can determine the difference equation for this system and
then obtain the state-space equation

COVERED ON BOARD

| | 0 1 ot
x(k + 1) =1 JXM’) + U Ju(k)

L‘ Ll

vk) = [0 1]x(k)

,k 1) = | () 1«1, ?] A ! :
e D= | 3+ [k O(k) = 5'(z[z1 — AT = A

v(k) = [0 1]x(k)

* Now that we have the state-space representation, we can
solve for Y(z) and then y(k):

2 z-3

b4 —1 { N
[zI*AH[} d—-Al=7-3z7+2

[z = AT = —

* Recall ourgeneral solution: X(z) = z[zI = A]"'x(0) + [zI — A] 'BU(z)
In this example we have x(0) = 0 (after all we started with a
transfer function which implicitly assumes x(0) = 0).

X(z) = [zl — A]"'BU(2)

L

2

P
i
ot

7. 4
A S ¥

1
7 — 37 +

L

X(z) = [21 = A]"'BU(z)

- z— 3 ‘i'?i"z}} \
Zoaral o oL
— 1 1]
72— 3z +2 z}biz

Lets assume we have a step input. The z-transform of the step function is
z/(z-1). We fill this into the above solution and into Y(z) = C X(z):

Y(z) = CX(z) = [0 1]

e
&

(2= 1)(F =32+ 2)

The output is the sequence 0, 1, 4, 11, 26,...

Solution for Sampled Data Systems

* The solution just presented works for purely DT
systems, but what if the plant is CT? There are a
couple of possibilities (we take the bolded path):

— Design controller in CT then translate to DT

* Using approximate mappings from s-domain to z-domain (e.g.
Tustin’s method, MPZ)

— Translate CT plant model to DT, then design controller
in DT

* Use approximate mappings from from s- to z- (as above)
* Or...

* Use the exact mapping for state-space representations we are
about to discuss

[We are following the solution presented in section 4.2 of
“Linear System Theory and Design” by Chen]

Assume we begin with a purely CT state-space representation
and its solution, developed earlier thisterm:

x(1) = Ax(¢) + Bu(¢)
y(t) = Cx(t) + Du(r)
The input u(t) will be produced by a computer and will be
held constant throughout each sample period: o
u(?r) = wk”T) =: ulk] for kT <t < (k+1)T o

We evaluate our CT solution at discrete time stepst = kT and t
= (k+1)T

t
x(1) = 2 x(0) + / AU"DBu(r) dt
0

kT
x[k] := x(kT) = AT x(0) + f AT =DBu(r) dt
0

(k+D)T
x[k + 1] := x((k + DT) = A*TDTx(0) + / AT DBy (1) dt
0

kT
x[k] := x(kT) = AT x(0) + f AT =DBu(r) dt
0

(k+1)T
x[k + 1] := x((k + DT) = A% DTx(0) + / eACTDT=OBYy (1) dt
0

 We canre-write the second equation as follows and then
recognize that it contains the first:

kT
x[k + 1] = AT [eAkTX(O) + / eA(kT_’)Bu(r)dt]
0

(k+DT
4+ / eA(kT—I—T—‘L’)Bu(,L_) dt
kT

T
x[k + 1] = AT x[k] + (/ eAO‘da) Bu[k]
0

e wherea=kT+T-t. We have also substitutedin our DT u[k]
which is constant within the integrated interval and can
therefore be factored out.

T
x[k + 1] = e*Tx[k] + (/ eA“da) Bu[k]
0

 Thisisnow a purely DT representation. We can establish a
correspondence between the given CT system (A, B, C, D) and
its DT equivalent (A4, By, Cy4, Dy):

x[k + 1] = A x[k] + Byulk]
ylk] = Cyx[k] + Dyul[k]
T
Ay =" By = (/O eAfdz)B C;,=C D;=D
* The only practical issue is in computing By. A few short
manipulations (see Chen for details) lead to the following:

B,=A"'(A;, — 1B (if A 1s nonsingular)

Example

Assume we start with the following transfer function
(appropriate form for a servomotor):

10
s2 + s

G(s) =

We can obtain the CT state space model quite directly

) = [0 0
Xtf)y == W . .

(1) =1 0Jx(r)

Simply apply our derived DT equivalents. We'll say that T=0.1s

Ay = e B,=A"'"A;,-DB C;,=C D;=D

Unfortunately, A is singular, so this doesn’t work! Phillipsand
Parr present another method which does work, but we’ll just
use Matlab.

Conversion from CT to DT using Matlab

 The function c2d converts from CT to DT state-space
representations. Infactyou have been usingthis all along,
since Matlab is inherently DT (it runs on a computer).

c2d Converts continuous-time dynamic system to discrete time.

SYSD = c2d(SYSC,TS,METHOD) computes a discrete-time model SYSD with
sampling time TS that approximates the continuous-time model SYSC.
The string METHOD selects the discretization method among the following:

'zoh'

"foh'

"impulse’

'"tustin'

'matched’
The default is

Zero-order hold on the inputs

Linear interpolation of inputs

Impulse-invariant discretization

Bilinear (Tustin) approximation.

Matched pole-zero method (for SISO systems only).

'zoh' when METHOD is omitted. The sampling time TS should

be specified in the time units of SYSC (see "TimeUnit" property).

For the example we execute: [Ad, Bd] = c2d(A, B, 0.1)

100052 o
x(k + 1) = [Jx(k) + [0’”“8“}%

0 0.905 0.952
v(k) =[1 0]x(k)

Amplitude

100

90 |

StepResponse
T

Time [seconds)

This is the step
response of the
converted DT
system. Note
that T=0.1s, so
the responses do
match.

Amplitude

This is the step response of the original
system. Note that the system is a DC
motor so as we continue to apply a
step input it is quite reasonable for the
output (motor shaft angle) to increase
continually.

Linear Sirulation Results

1 i 1 t i 1 t i 1
0 10 20 30 40 50 60 70 a0 90 100

Discrete Time Steps

