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Introduction
• So	far	we	have	considered	 only	continuous-time	 (CT)	systems.		

However,	 computers	are	very	often	incorporated	into	modern	 control	
systems.		Computers	 are	discrete-time	 (DT)	components.

• Computers	have	the	following	advantageous	 characteristics	for	
control	systems:
– They	continuously	grow	both	faster	and	cheaper;	Microcontrollers	

(complete	computer	on	one	IC)	often	cost	<	$5
– Fully	customizable	 through	software
– Operation	 is	static	and	largely	invariant	to	environmental	 conditions

• We	can	contrast	digital	computers	with	analog	electronic	components	
(e.g.	resistors,	 inductors,	capacitors,	op-amps)
– Not	easily	customizable	once	installed	and	may	deviate	 from	specs
– Affected	 by	variations	 in	temperature	
– Produce	analog	(i.e.	CT)	signals	which	are	quite	susceptible	 to	noise



Notation
• The	material	to	come	on	Digital	Control	comes	from	

different	sources:
– “Feedback	Control	of	Dynamic	 Systems”,	6th Edition,	by	Franklin,	

Powell,	and	Emami-Naeini (Sections	8.1,	8.2)
– “Feedback	Control	Systems”,	5th Edition,	by	Phillips	 and	Parr	

(Sections	11.6,	11.7,	11.8,	12.9,	13.4,	14.2)
– “Control	Systems	Engineering”,	 5th Edition,	by	Nise (z-transform	

tables)
– “Linear	System	Theory	and	Design”,	4th Edition	by	Chen	(Section	

4.2)
• The	notation	will	consequently	vary:

– Quantities	with	unqualified	 references	 to	time	are	continuous-
time:	e.g.	u(t)

– Quantities	which	refer	 to	integer	multiples	 of	the	sampling	
period,	 T,	are	discrete	samples:	 e.g.	u(kT)
• Often	the	T	is	dropped,	leaving	an	index	k:	u(k)
• Sometimes	square	brackets	are	used	for	discrete-time	signals:	u[k]



Discrete-Time	Systems

Chapter
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Mathematical

Descriptions of Systems

2.1 Introduction

The class of systems studied in this text is assumed to have some input terminals and output
terminals as shown in Fig. 2.1. We assume that if an excitation or input is applied to the input
terminals, a unique response or output signal can be measured at the output terminals. This
unique relationship between the excitation and response, input and output, or cause and effect
is essential in defining a system. A system with only one input terminal and only one output
terminal is called a single-variable system or a single-input single-output (SISO) system.
A system with two or more input terminals and/or two or more output terminals is called
a multivariable system. More specifically, we can call a system a multi-input multi-output
(MIMO) system if it has two or more input terminals and output terminals, a single-input
multi-output (SIMO) system if it has one input terminal and two or more output terminals.

Figure 2.1 System.

5
Discrete-time	 signals	 are	sequences	 of	numbers	(e.g.	u[k]	and	y[k])	above.		They	may	
be	sampled	 from	CT	signals	 (as	above)	or	they	may	be	produced	by	inherently	discrete	
processes.



Sampled	Data	Systems

• A	system	with	both	CT	and	DT	components	is	often	
referred	to	as	a	sampled	data	system

• In	practice,	most	control	systems	are	sampled	data	
systems

• An	analog-to-digital	(A/D)	converter	samples a	
physical	variable	and	translates	it	into	a	digital	
number
– We	usually	assume	this	occurs	at	a	fixed	sampling	
period,	T

• In	most	sampled	data	systems,	a	digital	controller	
replaces	a	continuous	controller	as	shown...
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case the sample petiod is fixed essentially by the length of the code, provided that no 
logic branches are present, which could vary the amount of code executed. 

There also may be a sampler and an AID converter for the input command rCt), 
which produces the discrete r(kT), from which the sensed output y(kT) will be sub-
tracted to arrive at the discrete etTor signal e(kT). As we saw in Sections 4.4 and 
5.4.4, and Example 6.15, the continuous compensation is approximated by difference 
equations, which are the discrete version of differential equations and can be made 
to duplicate the dynamic behavior of D(s) if the sample period is short enough. The 
result of the difference equations is a discrete u(kT) at each sample instant. This 
signal is converted to a continuous u(t) by the digital-to-analog (D/A) converter 
and the hold: the DI A converter changes the binary number to an analog voltage, 
and a zero-order hold maintains that same voltage throughout the sample petiod. 
The resulting u(t) is then applied to the actuator in precisely the same manner as 
the continuous implementation. There are two basic techniques for finding the differ-
ence equations for the digital controller. One technique, called discrete equivalent, 
consists of designing a continuous compensation D(s) using methods described in 
the previous chapters, then approximating that D(s) using the method of Section 4.4 
(Tustin's Meth?d), or one of the other methods described in Section 8.3. The other 
technique is discrete design, described in Section 8.6. Here the difference equations 
are found directly without designing D(s) first. 

The sample rate required depends on the closed-loop bandwidth of the system. 
Generally, sample rates should be about 20 times the bandwidth or faster in order 
to assure that the digital controller will match the performance of the continuous 

• If	the	input	is	CT	then	r(t)	must	be	sampled	as	shown.		However,	 the	
input	will	 often	be	DT	in	which	case	no	sampling	 is	required	on	the	
input.



• The	D/A	converter	converts	the	controller	output	to	an	
analog	signal	which	is	held	until	the	next	period	of	
duration	T.		This	is	known	as	zero-order	hold	(ZOH).		
ZOH	incurs	an	average	delay	of	T/2.

• This	delay	is	one	reason	we	generally	wish	to	increase	
the	frequency	of	the	digital	controller’s	operation.

Figure 8.2 
The delay due to the 
hold operation 
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controller. Slower sample rates can be used if orne adju lments are made in the 
digital cOlltroller or orne performance degradation i acceptable. Use of the di cret 
design method described in Section 8.6 allow for a much lower ample rale if 
that is desirable to minimize hardware costs; however, be t performance of a digital 
controller is obtained when the sample rate is greater than 2S limes th bandwidth. 

It is worth noting that the single most important impact of implementing a conu'ol 
. ysteOl digitally is the delay associated with the hold. Becau e each valuo of u(kT) 
in Fig. 8.1 (b) i held constant until the next value i ' available from the computer, the 
continuou value of u(t) consists of steps (see Fig. 8.2) that on average, are delayed 
from lI(kD by Th as shown io the figure. If we simply incorporate thi T/2 delay into 
a continuous anaJysis of Lhe ystem. an excellent prediction of the effects of sampling 
re 'uJls for sample rates much slower than 20 times bandwidth. We will d! Cll thi 
further in Section 8.3 .3. 

8.2 Dynamic Analysis of Discrete Systems 
The z-transform is the mathematical tool for the analysis of linear discrete systems. It 
plays the same role for discrete systems that the Laplace transfotID does for continuous 
systems. This section will give a short description of the z-transform, describe its use 
in analyzing discrete systems, and show how it relates to the Laplace transform. 

8.2.1 z-Transform 
In the analysis of continuous systems, we use the Laplace transfOlID, which is 
defined by 

.c{f(t)} = F(s) = 1000 

f(t)e- si dt, 

which leads directly to the important property that (with zero initial conditions) 

.cif(t)} = sF(s). (8.1) 

Relation (8.1) enables us easily to find the transfer function of a linear continuous 
system, given the differential equation of that system. 



Fundamental	Differences

• CT	systems	are	governed	by	differential	equations
• For	DT	systems	the	notion	of	a	derivative	is	not	so	
well	defined;		DT	systems	are	governed	by	difference	
equations

• The	following	is	a	general	2nd order	difference	
equation:

• The	“new	value”	at	y(k)	is	obtained	from	the	past	
values	of	y(k-1)	and	y(k-2)	as	well	as	current	and	past	
values	of	u.
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For discrete systems a similar procedure is available. The z-transform IS 

defined by 
00 

Z(f(k)} = F(z) = Lf(k)z-k, (8.2) 
k=O 

wheref(k) is the sampled version off(t), as shown in Fig. 8.3, and k = 0, 1,2,3, ... 
refers to discrete sample times to, tl, t2, 13, .... This leads directly to a property 
analogous to Eq. (8.1), specifically, that 

ZIf(k - I)} = Z-IF(Z). (8.3) 

This relation allows us to easily find the transfer function of a discrete system, given the 
difference equations of that system. For example, the general second-order difference 
equation 

y(k) = -aly(k - I) - a2y(k - 2) + bou(k) + blu(k - 1) + b2U(k - 2) 

can be converted from this form to the z-transform of the variables y(k), u(k), ... by 
invoking Eq. (8.3) once or twice to arrive at 

Y(z) = (-alz- I - a2Z-2)y(Z) + (bo + blz- I + b2Z-2)U(Z). (8.4) 

Equation (8.4) then results in the discrete transfer function 

YCz) bo + blz- I + b2Z-2 

U(z) = 1 + alCI + a2c2 . 

8.2.2 z-Transform Inversion 
Table 8.1 relates simple discrete-time functions to their z-transforms and gives the 
Laplace transforms for the same time functions. 

Given a general z-transform, we could expand it into a sum of elementary terms 
using partial-fraction expansion (see Appendix A) and find the resulting time series 
from the table. These procedures are exactly the same as those used for continuous 
systems; as with the continuous case, most designers would use a numerical evaluation 
of the discrete equations to obtain a time history rather than invel1ing the z-transform. 

A z-transform inversion technique that has no continuous counterpart is called 
long division. Given the z-transform 

N(z) 
Y(z) = D(z) , (8.5) 



Motivation	for	the	Z-Transform

• Why	did	we	ever	start	using	the	Laplace	
Transform	(LT)	for	control	systems?
– The	LT	simplifies	the	treatment	of	derivatives,	
allowing	differential	equations	to	be	easily	solved	
and	allowing	transfer	functions	to	be	found

• Recall	the	definition	of	the	LT	and	the	crucial	
identity	that	establishes	the	LT	of	a	derivative	
under	zero	initial	conditions:

Figure 8.2 
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Definition	 of	LT Derivative	property	of	LT



Z-Transform

• The	z-transform	is	the	counterpart	of	the	Laplace	
transform	for	DT	systems.		It	is	defined	as	follows:

• Note	that	k	is	an	index	referring	to	discrete	sample	times.		
Like	s,	z	is	a	complex	variable.

• Analogous	to	the	derivative	property	of	the	LT	we	have:

• This	allows	us	to	turn	difference	equations	into	transfer	
functions	in	the	same	way	as	the	derivative	property	in	
the	Laplace	domain.
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For discrete systems a similar procedure is available. The z-transform IS 

defined by 
00 

Z(f(k)} = F(z) = Lf(k)z-k, (8.2) 
k=O 

wheref(k) is the sampled version off(t), as shown in Fig. 8.3, and k = 0, 1,2,3, ... 
refers to discrete sample times to, tl, t2, 13, .... This leads directly to a property 
analogous to Eq. (8.1), specifically, that 

ZIf(k - I)} = Z-IF(Z). (8.3) 

This relation allows us to easily find the transfer function of a discrete system, given the 
difference equations of that system. For example, the general second-order difference 
equation 

y(k) = -aly(k - I) - a2y(k - 2) + bou(k) + blu(k - 1) + b2U(k - 2) 

can be converted from this form to the z-transform of the variables y(k), u(k), ... by 
invoking Eq. (8.3) once or twice to arrive at 

Y(z) = (-alz- I - a2Z-2)y(Z) + (bo + blz- I + b2Z-2)U(Z). (8.4) 

Equation (8.4) then results in the discrete transfer function 

YCz) bo + blz- I + b2Z-2 

U(z) = 1 + alCI + a2c2 . 

8.2.2 z-Transform Inversion 
Table 8.1 relates simple discrete-time functions to their z-transforms and gives the 
Laplace transforms for the same time functions. 

Given a general z-transform, we could expand it into a sum of elementary terms 
using partial-fraction expansion (see Appendix A) and find the resulting time series 
from the table. These procedures are exactly the same as those used for continuous 
systems; as with the continuous case, most designers would use a numerical evaluation 
of the discrete equations to obtain a time history rather than invel1ing the z-transform. 

A z-transform inversion technique that has no continuous counterpart is called 
long division. Given the z-transform 

N(z) 
Y(z) = D(z) , (8.5) 
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The	Transfer	Function	of	a	DT	System

• We	can	find	the	transfer	function	of	a	DT	system	by	using	the	
z-transform.		Consider	again	the	general	second-order	
difference	equation:

• Now	apply

• Similar	to	LT	we	seldom	use	the	raw	definition	of	the	z-
transform	but	make	use	of	tables	instead...
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This	 is	perhaps	the	most	important	theorem	for	our	purposes	
and	will	more	typically	be	written	 like	this:

Note	that	this	property	is	defined	for	positive	 n.		If	n	is	negative	
(i.e.	positive	 time	shift)	then	we	have	the	following:

We	will	soon	need	to	
apply	this	theorem	
for	n	=	1:



Inverse z-Transform

In a somewhat similar fashion to the ILT, we can obtain the inverse
z-Transform using partial fraction expansion. In the s-domain the
terms corresponding to exponentials were of the form,

1

s + a

() e

�at

In the z-domain we have,

z

z � e

�aT
() e

�akT

Therefore we will try to reduce z-domain expressions into the
following form,

F (z) =
Az

z � z

1

+
Bz

z � z

2

+ · · ·

We require the z in the numerator. This can be achieved by
expanding F (z)/z instead of F (z), then multiplying by z ...



e.g. Find the sampled time function corresponding to F (z).

F (z) =
0.5z

(z � 0.5)(z � 0.7)

We expand F (z)/z ,

F (z)

z

=
0.5

(z � 0.5)(z � 0.7)
=

A

z � 0.5
+

B

z � 0.7
=

�2.5

z � 0.5
+

2.5

z � 0.7

Therefore,

F (z) =
�2.5z

z � 0.5
+

2.5z

z � 0.7

Apply the inverse z-Transform on each term,

f (kT ) = �2.5(0.5)k + 2.5(0.7)k

Notice that do not get f (t). We only get back its sampled values.



Discrete-Time	State	Space
• The	discrete-time	(DT)	state	space	representation	is	
of	the	following	form:

• This	is	quite	similar	to	the	continuous-time	(CT)	
representation	except	that	we	have	a	shift	in	time	as	
opposed	to	a	derivative

• In	CT	we	needed	to	handle	higher-order	derivatives	
which	was	achieved	by	defining	a	stack	of	state	
variables

• In	DT	we	can	apply	the	same	idea	to	handle	larger	
time	shifts.



• Consider	the	following	common	form	of	difference	
equation:

• We	can	assign	the	“base”	variable	y(k)	as	our	first	
state	variable	and	create	further	state	variables	to	
represent	all	subsequent	time	shifts:
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State-space Representation of Time-invariant Scalar Di↵erence Equations

Consider the following scalar di↵erence equation:

y(k + n) + a1y(k + n� 1) + a2y(k + n� 2) + . . . + a
n�1y(k + 1) + a

n

y(k) = bu(k)

where k denotes the kth sampling instant, y(k) is the system output at the k-th sam-

pling instant, and u(k) is the input at the k-th sampling instant. Let us define:

x1(k) = y(k)

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

...
...

x
n�1(k + 1) = x

n

(k)

x
n

(k + 1) = �a1xn

(k)� a2xn�1(k)� . . .� a
n

x1(k) + bu(k)

2

66664

x1(k + 1)
x2(k + 1)

...
x

n

(k + 1)

3

77775
=

2

66666664

0 1 0 . . . 0
0 0 1

. . .

1
�a

n

�a
n�1 �a

n�2 �a1

3

77777775

2

66664

x1(k)
x2(k)

...
x

n

(k)

3

77775
+

2

66664

0
0
...
b

3

77775
u(k)

y(k) =
h

1 0 0 . . . 0
i

2

66664

x1(k)
x2(k)

...
x

n

(k)

3

77775

or

x(k + 1) = Gx(k) + Hu(k)

y(k) = Cx(k)

where

x(k) =

2

66664

x1(k)
x2(k)

...
x

n

(k)

3

77775



• The	final	state	space	representation	easily	follows:

• Notice	that	this	is	in	Controller	Canonical	Form	(CCF)
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Solution	of	the	DT	State	Space	Equations
• Consider	just	the	DT	state	space	difference	equation:

• We	will	assume	that	x(0)	and	the	input	u(k)	are	
known.		We	can	solve	for	k	=	0,	1,	2,	...



• In	the	CT	solution	to	the	state-space	equation	we	found	
something	similar,	only	more	exotic	because	it	involved	the	
matrix	exponential.		Our	approach	then	was	to	try	using	
Laplace	to	obtain	an	easier-to-compute	solution.		Here	we	do	
the	same,	except	we	use	the	z-transform	instead.

• First	we	restate	the	state-space	difference	equation:

• We	rewrite	this	as	individual	row	equations:

• Now	take	the	z-transform...



z-transform

Express	as	a	vector-matrix	equation	 and	solve	for	X(z):



We	can	equate	 the	time-domain	solution	(above	 left)	and	the	z-transform	solution	
(above	 right)	and	denote	Φ(k)	=	Ak.		Note	that	Φ(k)	is	the	state	transition	matrix	for	
our	discrete-time	 solution,	but	it	is	not	the	matrix	exponential.	 	Now	we	have	an	
alternative	way	of	computing	Φ(k):

Notice	how	closely	this	followed	the	derivation	of	the	state-space	 solution	in	CT



• Consider	the	DT	system	with	the	following	transfer	function:

• We	can	determine	the	difference	equation	for	this	system	and	
then	obtain	the	state-space	equation

Example

COVERED	ON	BOARD



• Now	that	we	have	the	state-space	representation,	we	can	
solve	for	Y(z)	and	then	y(k):

• Recall	our	general	solution:																																																																			
In	this	example	we	have	x(0)	=	0	(after	all	we	started	with	a	
transfer	function	which	implicitly	assumes	x(0)	=	0).



• Lets	assume	we	have	a	step	input.		The	z-transform	of	the	step	function	is	
z/(z-1).	 	We	fill	this	into	the	above	solution	and	into	Y(z)	=	C	X(z):

• Applying	partial	 fraction	expansion	and	then	the	inverse	z-transform:

• The	output	is	the	sequence	 0,	1,	4,	11,	26,...



Solution	for	Sampled	Data	Systems

• The	solution	just	presented	works	for	purely	DT	
systems,	but	what	if	the	plant	is	CT?		There	are	a	
couple	of	possibilities	(we	take	the	bolded path):
– Design	controller	in	CT	then	translate	to	DT

• Using	approximate	mappings	 from	s-domain	 to	z-domain	 (e.g.	
Tustin’s	method,	MPZ)

– Translate	CT	plant	model	to	DT,	then	design	controller	
in	DT
• Use	approximate	mappings	 from	from	s- to	z- (as	above)
• Or...
• Use	the	exact	mapping	 for	state-space	representations	 we	are	
about	 to	discuss	



• [We	are	following	the	solution	presented	in	section	4.2	of	
“Linear	System	Theory	and	Design”	by	Chen]

• Assume	we	begin	with	a	purely	CT	state-space	representation	
and	its	solution,	developed	earlier	this	term:

• The	input	u(t)	will	be	produced	by	a	computer	and	will	be	
held	constant	throughout	each	sample	period:

• We	evaluate	our	CT	solution	at	discrete	time	steps	t	=	kT and	t	
=	(k+1)	T
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we can approximate (4.9) as

x(t + T ) = x(t) + Ax(t)T + Bu(t)T (4.11)

If we compute x(t) and y(t) only at t = kT for k = 0, 1, . . . , then (4.11) and (4.10) become

x((k + 1)T ) = (I + T A)x(kT ) + T Bu(kT )

y(kT ) = Cx(kT ) + Du(kT )

This is a discrete-time state-space equation and can easily be computed on a digital computer.
This discretization is the easiest to carry out but yields the least accurate results for the same
T . We discuss next a different discretization.

If an input u(t) is generated by a digital computer followed by a digital-to-analog
converter, then u(t) will be piecewise constant. This situation often arises in computer control
of control systems. Let

u(t) = u(kT ) =: u[k] for kT ≤ t < (k + 1)T (4.12)

for k = 0, 1, 2, . . . . This input changes values only at discrete-time instants. For this input,
the solution of (4.9) still equals (4.5). Computing (4.5) at t = kT and t = (k + 1)T yields

x[k] := x(kT ) = eAkT x(0) +
∫ kT

0
eA(kT −τ )Bu(τ ) dτ (4.13)

and

x[k + 1] := x((k + 1)T ) = eA(k+1)T x(0) +
∫ (k+1)T

0
eA((k+1)T −τ )Bu(τ ) dτ (4.14)

Equation (4.14) can be written as

x[k + 1] = eAT

[

eAkT x(0) +
∫ kT

0
eA(kT −τ )Bu(τ )dτ

]

+
∫ (k+1)T

kT

eA(kT +T −τ )Bu(τ ) dτ

which becomes, after substituting (4.12) and (4.13) and introducing the new variable α :=
kT + T − τ ,

x[k + 1] = eAT x[k] +
(

∫ T

0
eAαdα

)

Bu[k]

Thus, if an input changes value only at discrete-time instants kT and if we compute only the
responses at t = kT , then (4.9) and (4.10) become

x[k + 1] = Adx[k] + Bdu[k] (4.15)

y[k] = Cdx[k] + Ddu[k] (4.16)
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partial fraction expansion, and then using a Laplace transform table. These can be carried out
using the MATLAB functionsroots andresidue. However, when there are repeated poles,
the computation may become very sensitive to small changes in the data, including roundoff
errors; therefore computing solutions using the Laplace transform is not a viable method on
digital computers. A better method is to transform transfer functions into state-space equations
and then compute the solutions. This chapter discusses solutions of state equations, how to
transform transfer functions into state equations, and other related topics. We discuss first the
time-invariant case and then the time-varying case.

4.2 Solution of LTI State Equations

Consider the linear time-invariant (LTI) state-space equation

ẋ(t) = Ax(t) + Bu(t) (4.2)

y(t) = Cx(t) + Du(t) (4.3)

where A, B, C, and D are, respectively, n × n, n × p, q × n, and q × p constant matrices.
The problem is to find the solution excited by the initial state x(0) and the input u(t). The
solution hinges on the exponential function of A studied in Section 3.6. In particular, we need
the property in (3.55) or

d

dt
eAt = AeAt = eAtA

to develop the solution. Premultiplying e−At on both sides of (4.2) yields

e−At ẋ(t) − e−AtAx(t) = e−AtBu(t)

which implies

d

dt

(

e−Atx(t)
)

= e−AtBu(t)

Its integration from 0 to t yields

e−Aτ x(τ )
∣

∣

t

τ=0 =
∫ t

0
e−Aτ Bu(τ ) dτ

Thus we have

e−Atx(t) − e0x(0) =
∫ t

0
e−Aτ Bu(τ ) dτ (4.4)

Because the inverse of e−At is eAt and e0 = I as discussed in (3.54) and (3.52), (4.4) implies

x(t) = eAtx(0) +
∫ t

0
eA(t−τ )Bu(τ ) dτ (4.5)

This is the solution of (4.2).
It is instructive to verify that (4.5) is the solution of (4.2). To verify this, we must show

that (4.5) satisfies (4.2) and the initial condition x(t) = x(0) at t = 0. Indeed, at t = 0, (4.5)
reduces to
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we can approximate (4.9) as

x(t + T ) = x(t) + Ax(t)T + Bu(t)T (4.11)

If we compute x(t) and y(t) only at t = kT for k = 0, 1, . . . , then (4.11) and (4.10) become

x((k + 1)T ) = (I + T A)x(kT ) + T Bu(kT )

y(kT ) = Cx(kT ) + Du(kT )

This is a discrete-time state-space equation and can easily be computed on a digital computer.
This discretization is the easiest to carry out but yields the least accurate results for the same
T . We discuss next a different discretization.

If an input u(t) is generated by a digital computer followed by a digital-to-analog
converter, then u(t) will be piecewise constant. This situation often arises in computer control
of control systems. Let

u(t) = u(kT ) =: u[k] for kT ≤ t < (k + 1)T (4.12)

for k = 0, 1, 2, . . . . This input changes values only at discrete-time instants. For this input,
the solution of (4.9) still equals (4.5). Computing (4.5) at t = kT and t = (k + 1)T yields

x[k] := x(kT ) = eAkT x(0) +
∫ kT

0
eA(kT −τ )Bu(τ ) dτ (4.13)

and

x[k + 1] := x((k + 1)T ) = eA(k+1)T x(0) +
∫ (k+1)T

0
eA((k+1)T −τ )Bu(τ ) dτ (4.14)

Equation (4.14) can be written as

x[k + 1] = eAT

[

eAkT x(0) +
∫ kT

0
eA(kT −τ )Bu(τ )dτ

]

+
∫ (k+1)T

kT

eA(kT +T −τ )Bu(τ ) dτ

which becomes, after substituting (4.12) and (4.13) and introducing the new variable α :=
kT + T − τ ,

x[k + 1] = eAT x[k] +
(

∫ T

0
eAαdα

)

Bu[k]

Thus, if an input changes value only at discrete-time instants kT and if we compute only the
responses at t = kT , then (4.9) and (4.10) become

x[k + 1] = Adx[k] + Bdu[k] (4.15)

y[k] = Cdx[k] + Ddu[k] (4.16)

Zero-
Order	
Hold



• We	can	re-write	the	second	equation	as	follows	and	then	
recognize	that	it	contains	the	first:

• where	α =	kT +	T	- τ.		We	have	also	substituted	in	our	DT	u[k]	
which	is	constant	within	the	integrated	interval	and	can	
therefore	be	factored	out.
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∫ T
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• This	is	now	a	purely	DT	representation.		We	can	establish	a	
correspondence	between	the	given	CT	system	(A,	B,	C,	D)	and	
its	DT	equivalent	(Ad,	Bd,	Cd,	Dd):

• The	only	practical	issue	is	in	computing	Bd.		A	few	short	
manipulations	(see	Chen	for	details)	lead	to	the	following:
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with

Ad = eAT Bd =
(

∫ T

0
eAτdτ

)

B Cd = C Dd = D (4.17)

This is a discrete-time state-space equation. Note that there is no approximation involved in
this derivation and (4.15) yields the exact solution of (4.9) at t = kT if the input is piecewise
constant.

We discuss the computation of Bd . Using (3.51), we have
∫ T

0

(

I + Aτ + A2 τ 2

2!
+ · · ·

)

dτ

= T I + T 2

2!
A + T 3

3!
A2 + T 4

4!
A3 + · · ·

This power series can be computed recursively as in computing (3.51). If A is nonsingular,
then the series can be written as, using (3.51),

A−1
(

T A + T 2

2!
A2 + T 3

3!
A3 + · · · + I − I

)

= A−1(eAT − I)

Thus we have

Bd = A−1(Ad − I)B (if A is nonsingular) (4.18)

Using this formula, we can avoid computing an infinite series.
The MATLAB function [ad,bd]=c2d(a,b,T) transforms the continuous-time state

equation in (4.9) into the discrete-time state equation in (4.15).

4.2.2 Solution of Discrete-Time Equations

Consider the discrete-time state-space equation

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
(4.19)

where the subscript d has been dropped. It is understood that if the equation is obtained from
a continuous-time equation, then the four matrices must be computed from (4.17). The two
equations in (4.19) are algebraic equations. Once x[0] and u[k], k = 0, 1, . . ., are given, the
response can be computed recursively from the equations.

The MATLAB functiondstep computes unit-step responses of discrete-time state-space
equations. It also computes unit-step responses of discrete transfer functions; internally, it first
transforms the transfer function into a discrete-time state-space equation by calling tf2ss,
which will be discussed later, and then uses dstep. The function dlsim, an acronym for
discrete linear simulation, computes responses excited by any input. The function step
computes unit-step responses of continuous-time state-space equations. Internally, it first uses
the function c2d to transform a continuous-time state equation into a discrete-time equation
and then carries out the computation. If the function step is applied to a continuous-time
transfer function, then it first uses tf2ss to transform the transfer function into a continuous-
time state equation and then discretizes it by using c2d and then uses dstep to compute the
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Example
• Assume	we	start	with	the	following	transfer	function	

(appropriate	form	for	a	servomotor):

• We	can	obtain	the	CT	state	space	model	quite	directly

• Simply	apply	our	derived	DT	equivalents.	We’ll	say	that	T	=	0.1	s

• Unfortunately,	A	is	singular,	so	this	doesn’t	work!		Phillips	and	
Parr	present	another	method	which	does	work,	but	we’ll	just	
use	Matlab.



Conversion	from	CT	to	DT	using	Matlab
• The	function	c2d	converts	from	CT	to	DT	state-space	

representations.		In	fact	you	have	been	using	this	all	along,	
since	Matlab is	inherently	DT	(it	runs	on	a	computer).

• For	the	example	we	execute:	[Ad,	Bd]	=	c2d(A,	B,	0.1)

c2d  Converts continuous-time dynamic system to discrete time.

SYSD = c2d(SYSC,TS,METHOD) computes a discrete-time model SYSD with 
sampling time TS that approximates the continuous-time model SYSC.
The string METHOD selects the discretization method among the following:

'zoh'       Zero-order hold on the inputs
'foh'       Linear interpolation of inputs
'impulse'   Impulse-invariant discretization
'tustin'    Bilinear (Tustin) approximation.
'matched'   Matched pole-zero method (for SISO systems only).

The default is 'zoh' when METHOD is omitted. The sampling time TS should 
be specified in the time units of SYSC (see "TimeUnit" property).



This	 is	the	step	response	 of	the	original	
system.		Note	that	the	system	is	a	DC	
motor	so	as	we	continue	to	apply	a	
step	 input	it	 is	quite	reasonable	 for	the	
output	(motor	shaft	angle)	to	increase	
continually.

This	 is	the	step	
response	 of	the	
converted	DT	
system.		Note	
that	T	=	0.1	s,	so	
the	responses	 do	
match. Discrete	Time	Steps


