Digital Control: Fundamentals

ENGI 7825: Control Systems II Andrew Vardy

Introduction

- So far we have considered only continuous-time (CT) systems. However, computers are very often incorporated into modern control systems. Computers are discrete-time (DT) components.
- Computers have the following advantageous characteristics for control systems:
- They continuously grow both faster and cheaper; Microcontrollers (complete computer on one IC) often cost < \$5
- Fully customizable through software
- Operation is static and largely invariant to environmental conditions
- We can contrast digital computers with analog electronic components (e.g. resistors, inductors, capacitors, op-amps)
- Not easily customizable once installed and may deviate from specs
- Affected by variations in temperature
- Produce analog (i.e. CT) signals which are quite susceptible to noise

Notation

- The material to come on Digital Control comes from different sources:
- "Feedback Control of Dynamic Systems", $6^{\text {th }}$ Edition, by Franklin, Powell, and Emami-Naeini (Sections 8.1, 8.2)
- "Feedback Control Systems", 5th Edition, by Phillips and Parr (Sections 11.6, 11.7, 11.8, 12.9, 13.4, 14.2)
- "Control Systems Engineering", $5^{\text {th }}$ Edition, by Nise (z-transform tables)
- "Linear System Theory and Design", 4 ${ }^{\text {th }}$ Edition by Chen (Section 4.2)
- The notation will consequently vary:
- Quantities with unqualified references to time are continuoustime: e.g. $u(t)$
- Quantities which refer to integer multiples of the sampling period, T , are discrete samples: e.g. u(kT)
- Often the T is dropped, leaving an index $k: u(k)$
- Sometimes square brackets are used for discrete-time signals: u[k]

Discrete-Time Systems

Discrete-time signals are sequences of numbers (e.g. u[k] and $y[k]$) above. They may be sampled from CT signals (as above) or they may be produced by inherently discrete processes.

Sampled Data Systems

- A system with both CT and DT components is often referred to as a sampled data system
- In practice, most control systems are sampled data systems
- An analog-to-digital (A/D) converter samples a physical variable and translates it into a digital number
- We usually assume this occurs at a fixed sampling period, T
- In most sampled data systems, a digital controller replaces a continuous controller as shown...

Figure 8.1
Block diagrams for a basic control system:
(a) continuous system;
(b) with a digital
computer

(a)

(b)

- If the input is $C T$ then $r(t)$ must be sampled as shown. However, the input will often be DT in which case no sampling is required on the input.
- The D/A converter converts the controller output to an analog signal which is held until the next period of duration T . This is known as zero-order hold (ZOH). ZOH incurs an average delay of T/2.

Figure 8.2
The delay due to the hold operation

- This delay is one reason we generally wish to increase the frequency of the digital controller's operation.

Fundamental Differences

- CT systems are governed by differential equations
- For DT systems the notion of a derivative is not so well defined; DT systems are governed by difference equations
- The following is a general $2^{\text {nd }}$ order difference equation:
$y(k)=-a_{1} y(k-1)-a_{2} y(k-2)+b_{0} u(k)+b_{1} u(k-1)+b_{2} u(k-2)$
- The "new value" at $\mathrm{y}(\mathrm{k})$ is obtained from the past values of $y(k-1)$ and $y(k-2)$ as well as current and past values of u.

Motivation for the Z-Transform

- Why did we ever start using the Laplace Transform (LT) for control systems?
- The LT simplifies the treatment of derivatives, allowing differential equations to be easily solved and allowing transfer functions to be found
- Recall the definition of the LT and the crucial identity that establishes the LT of a derivative under zero initial conditions:

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Definition of LT

$$
\mathcal{L}\{\dot{f}(t)\}=s F(s)
$$

Z-Transform

- The z-transform is the counterpart of the Laplace transform for DT systems. It is defined as follows:

$$
\mathcal{Z}\{f(k)\}=F(z)=\sum_{k=0}^{\infty} f(k) z^{-k}
$$

- Note that k is an index referring to discrete sample times. Like s, z is a complex variable.
- Analogous to the derivative property of the LT we have:

$$
\mathcal{Z}\{f(k-1)\}=z^{-1} F(z)
$$

- This allows us to turn difference equations into transfer functions in the same way as the derivative property in the Laplace domain.

The Transfer Function of a DT System

- We can find the transfer function of a DT system by using the z-transform. Consider again the general second-order difference equation:

$$
y(k)=-a_{1} y(k-1)-a_{2} y(k-2)+b_{0} u(k)+b_{1} u(k-1)+b_{2} u(k-2)
$$

- Now apply $\mathcal{Z}\{f(k-1)\}=z^{-1} F(z)$

$$
\begin{gathered}
Y(z)=\left(-a_{1} z^{-1}-a_{2} z^{-2}\right) Y(z)+\left(b_{0}+b_{1} z^{-1}+b_{2} z^{-2}\right) U(z) \\
\frac{Y(z)}{U(z)}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}}{1+a_{1} z^{-1}+a_{2} z^{-2}}
\end{gathered}
$$

- Similar to LT we seldom use the raw definition of the ztransform but make use of tables instead...

TABLE 13.1 Partial table of z - and s-transforms

	$f(t)$	$F(s)$	$F(z)$	$f(k T)$
1.	$u(\mathrm{t})$	$\frac{1}{s}$	$\frac{z}{z-1}$	$u(K T)$
2.	t	$\frac{1}{s^{2}}$	$\frac{T z}{(z-1)^{2}}$	$k T$
3.	t^{n}	$\frac{n!}{s^{n+1}}$	$\lim _{a \rightarrow 0}(-1)^{n} \frac{d^{n}}{d a^{n}}\left[\frac{z}{z-e^{-a T}}\right]$	$(k T)^{n}$
4.	$e^{-a t}$	$\frac{1}{s+a}$	$\frac{z}{z-e^{-a T}}$	$e^{-a k T}$
5.	$t^{n} e^{\sim a t}$	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^{n} \frac{d^{n}}{d a^{n}}\left[\frac{z}{z-e^{-a T}}\right]$	$(k T)^{n} e^{-a k T}$
6.	$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$	$\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}$	$\sin \omega k T$
7.	$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$	$\frac{z(z-\cos \omega T)}{z^{2}-2 z \cos \omega T+1}$	$\cos \omega k T$
8.	$e^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$	$\frac{z e^{-a T} \sin \omega T}{z^{2}-2 z e^{-a T} \cos \omega T+e^{-2 a T}}$	$e^{-a k T} \sin \omega k T$
9.	$e^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$	$\frac{z^{2}-z e^{-a T} \cos \omega T}{z^{2}-2 z e^{-a T} \cos \omega T+e^{-2 a T}}$	$e^{-a k T} \cos \omega k T$

TABLE 13.2 z-transform theorems

	Theorem	Name
1.	$z\{a f(t)\}=a F(z)$	Linearity theorem
2.	$z\left\{f_{1}(t)+f_{2}(t)\right\}=F_{1}(z)+F_{2}(z)$	Linearity theorem
3.	$z\left\{e^{-a T} f(t)\right\}=F\left(e^{a T} z\right)$	Complex differentiation
4	$z\{f(t-n T)\}=z^{-n} F(z)$	Real translation
5.	$z\{t f(t)\}=-T z \frac{d F(z)}{d z}$	Complex differentiation
6.	$f(0)=\lim _{z \rightarrow \infty} F(z)$	Initial value theorem
7.	$f(\infty)=\lim _{z \rightarrow 1}\left(1-z^{-1}\right) F(z)$	Final value theorem

Note: $k T$ may be substituted for t in the table.
This is perhaps the most important theorem for our purposes and will more typically be written like this:

$$
Z\{f(k-n)\}=z^{-n} F(z)
$$

Note that this property is defined for positive n. If n is negative (i.e. positive time shift) then we have the following:

We will soon need to apply this theorem for $\mathrm{n}=1$:

$$
Z\{f(k+n)\}=z^{n}\left\{F(z)-\sum_{i=0}^{n-1} f(i) z^{-i}\right\}
$$

$$
Z\{f(k+1)\}=z(F(z)-f(0))
$$

Inverse z-Transform

In a somewhat similar fashion to the ILT, we can obtain the inverse z-Transform using partial fraction expansion. In the s-domain the terms corresponding to exponentials were of the form,

$$
\frac{1}{s+a} \Longleftrightarrow e^{-a t}
$$

In the z-domain we have,

$$
\frac{z}{z-e^{-a T}} \Longleftrightarrow e^{-a k T}
$$

Therefore we will try to reduce z-domain expressions into the following form,

$$
F(z)=\frac{A z}{z-z_{1}}+\frac{B z}{z-z_{2}}+\cdots
$$

We require the z in the numerator. This can be achieved by expanding $F(z) / z$ instead of $F(z)$, then multiplying by $z \ldots$
e.g. Find the sampled time function corresponding to $F(z)$.

$$
F(z)=\frac{0.5 z}{(z-0.5)(z-0.7)}
$$

We expand $F(z) / z$,
$\frac{F(z)}{z}=\frac{0.5}{(z-0.5)(z-0.7)}=\frac{A}{z-0.5}+\frac{B}{z-0.7}=\frac{-2.5}{z-0.5}+\frac{2.5}{z-0.7}$
Therefore,

$$
F(z)=\frac{-2.5 z}{z-0.5}+\frac{2.5 z}{z-0.7}
$$

Apply the inverse z-Transform on each term,

$$
f(k T)=-2.5(0.5)^{k}+2.5(0.7)^{k}
$$

Notice that do not get $f(t)$. We only get back its sampled values.

Discrete-Time State Space

- The discrete-time (DT) state space representation is of the following form:

$$
\begin{aligned}
\mathbf{x}(k+1) & =\mathbf{A} \mathbf{x}(k)+\mathbf{B u}(k) \\
\mathbf{y}(k) & =\mathbf{C x}(k)+\mathbf{D u}(k)
\end{aligned}
$$

- This is quite similar to the continuous-time (CT) representation except that we have a shift in time as opposed to a derivative
- In CT we needed to handle higher-order derivatives which was achieved by defining a stack of state variables
- In DT we can apply the same idea to handle larger time shifts.
- Consider the following common form of difference equation:
$y(k+n)+a_{1} y(k+n-1)+a_{2} y(k+n-2)+\ldots+a_{n-1} y(k+1)+a_{n} y(k)=b u(k)$
- We can assign the "base" variable $y(k)$ as our first state variable and create further state variables to represent all subsequent time shifts:

$$
\begin{aligned}
x_{1}(k) & =y(k) \\
x_{1}(k+1)= & x_{2}(k) \\
x_{2}(k+1)= & x_{3}(k) \\
\vdots & \vdots \\
x_{n-1}(k+1)= & x_{n}(k) \\
x_{n}(k+1)= & -a_{1} x_{n}(k)-a_{2} x_{n-1}(k)-\ldots-a_{n} x_{1}(k)+b u(k)
\end{aligned}
$$

$$
\begin{aligned}
x_{1}(k) & =y(k) \\
x_{1}(k+1)= & x_{2}(k) \\
x_{2}(k+1)= & x_{3}(k) \\
\vdots & \vdots \\
x_{n-1}(k+1)= & x_{n}(k) \\
x_{n}(k+1)= & -a_{1} x_{n}(k)-a_{2} x_{n-1}(k)-\ldots-a_{n} x_{1}(k)+b u(k)
\end{aligned}
$$

- The final state space representation easily follows:

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1}(k+1) \\
x_{2}(k+1) \\
\vdots \\
x_{n}(k+1)
\end{array}\right]=\left[\begin{array}{rrrrr}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & \\
& & & \ddots & \\
& & & & 1 \\
-a_{n} & -a_{n-1} & -a_{n-2} & & -a_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
b
\end{array}\right] u(k) } \\
y(k)=\left[\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right]
\end{aligned}
$$

- Notice that this is in Controller Canonical Form (CCF)

Solution of the DT State Space Equations

- Consider just the DT state space difference equation:

$$
\mathbf{x}(k+1)=\mathbf{A} \mathbf{x}(k)+\mathbf{B u}(k)
$$

- We will assume that $x(0)$ and the input $u(k)$ are known. We can solve for $k=0,1,2, \ldots$

$$
\begin{aligned}
\mathbf{x}(1) & =\mathbf{A} \mathbf{x}(0)+\mathbf{B u}(0) \\
\mathbf{x}(2) & =\mathbf{A} \mathbf{x}(1)+\mathbf{B u}(1)=\mathbf{A}[\mathbf{A} \mathbf{x}(0)+\mathbf{B u}(0)]+\mathbf{B u}(1) \\
& =\mathbf{A}^{2} \mathbf{x}(0)+\mathbf{A} \mathbf{B} \mathbf{u}(0)+\mathbf{B u}(1) \\
\mathbf{x}(3) & =\mathbf{A} \mathbf{x}(2)+\mathbf{B u}(2)=\mathbf{A}\left[\mathbf{A}^{2} \mathbf{x}(0)+\mathbf{A} \mathbf{B u}(0)+\mathbf{B u}(1)\right]+\mathbf{B u}(2) \\
& =\mathbf{A}^{3} \mathbf{x}(0)+\mathbf{A}^{2} \mathbf{B u}(0)+\mathbf{A} \mathbf{B u}(1)+\mathbf{B u}(2) \\
& \vdots \\
\mathbf{x}(n) & =\mathbf{A}^{n} \mathbf{x}(0)+\mathbf{A}^{n-1} \mathbf{B u}(0)+\mathbf{A}^{n-2} \mathbf{B u}(1)+\cdots+\mathbf{A B u}(n-2)+\mathbf{B u}(n-1) \\
\mathbf{x}(n) & =\mathbf{A}^{n} \mathbf{x}(0)+\sum_{k=0}^{n-1} \mathbf{A}^{n-1-k} \mathbf{B u}(k)
\end{aligned}
$$

$$
\mathbf{x}(n)=\mathbf{A}^{n} \mathbf{x}(0)+\sum_{k=0}^{n-1} \mathbf{A}^{n-1-k} \mathbf{B} \mathbf{u}(k)
$$

- In the CT solution to the state-space equation we found something similar, only more exotic because it involved the matrix exponential. Our approach then was to try using Laplace to obtain an easier-to-compute solution. Here we do the same, except we use the z-transform instead.
- First we restate the state-space difference equation:

$$
\mathbf{x}(k+1)=\mathbf{A} \mathbf{x}(k)+\mathbf{B} \mathbf{u}(k)
$$

- We rewrite this as individual row equations:

$$
\begin{aligned}
x_{1}(k+1) & =a_{11} x_{1}(k)+\cdots+a_{1 n} x_{n}(k)+b_{11} u_{1}(k)+\cdots+b_{1 r} u_{r}(k) \\
& \vdots \\
x_{n}(k+1) & =a_{n 1} x_{1}(k)+\cdots+a_{n n} x_{n}(k)+b_{n 1} u_{1}(k)+\cdots+b_{n r} u_{r}(k)
\end{aligned}
$$

- Now take the z-transform...

$$
\begin{gathered}
x_{1}(k+1)=a_{11} x_{1}(k)+\cdots+a_{1 n} x_{n}(k)+b_{11} u_{1}(k)+\cdots+b_{1 r} u_{r}(k) \\
\vdots \\
x_{n}(k+1)=a_{n 1} x_{1}(k)+\cdots+a_{n n} x_{n}(k)+b_{n 1} u_{1}(k)+\cdots+b_{n r} u_{r}(k) \\
\\
z\left[X_{1}(z)-x_{1}(0)\right]=a_{11} X_{1}(z)+\cdots+a_{1 n} X_{n}(z)+b_{11} U_{1}(z)+\cdots+b_{1 r} U_{r}(z) \\
\vdots \\
z\left[X_{n}(z)-x_{n}(0)\right]=a_{n 1} X_{1}(z)+\cdots+a_{n n} X_{n}(z)+b_{n 1} U_{1}(z)+\cdots+b_{n r} U_{r}(z)
\end{gathered}
$$

Express as a vector-matrix equation and solve for $\mathbf{X}(\mathrm{z})$:

$$
\begin{gathered}
z[\mathbf{X}(z)-x(0)]=\mathbf{A X}(z)+\mathbf{B U}(z) \\
{[z \mathbf{I}-\mathbf{A}] \mathbf{X}(z)=z \mathbf{x}(0)+\mathbf{B U}(z)} \\
\mathbf{X}(z)=z[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{x}(0)+[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{B} \mathbf{U}(z)
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x}(n)=\mathbf{A}^{n} \mathbf{x}(0)+\sum_{k=0}^{n-1} \mathbf{A}^{n-1-k} \mathbf{B} \mathbf{u}(k) & \\
& \mathbf{X}(z)=z[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{x}(0)+[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{B U}(z)
\end{aligned}
$$

We can equate the time-domain solution (above left) and the z-transform solution (above right) and denote $\boldsymbol{\Phi}(\mathrm{k})=\mathrm{A}^{k}$. Note that $\boldsymbol{\Phi}(\mathrm{k})$ is the state transition matrix for our discrete-time solution, but it is not the matrix exponential. Now we have an alternative way of computing $\boldsymbol{\Phi}(\mathrm{k})$:

$$
\begin{gathered}
\Phi(k)=z^{-1}\left(z[z \mathbf{L}-\mathbf{A}]^{-1}\right)=\mathbf{A}^{k} \\
\mathbf{x}(n)=\Phi(n) \mathbf{x}(0)+\sum_{k=0}^{n-1} \Phi(n-1-k) \mathbf{B u}(k)
\end{gathered}
$$

Notice how closely this followed the derivation of the state-space solution in CT

Example

- Consider the DT system with the following transfer function:

$$
G(z)=\frac{Y(z)}{U(z)}=\frac{z}{z^{2}-3 z+2}=\frac{z}{(z-1)(z-2)}
$$

- We can determine the difference equation for this system and then obtain the state-space equation

COVERED ON BOARD

$$
\begin{aligned}
\mathbf{x}(k+1) & =\left[\begin{array}{rr}
0 & 1 \\
-2 & 3
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \mathbf{x}(k)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x}(k+1) & =\left[\begin{array}{rr}
0 & 1 \\
-2 & 3
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(k) \quad \Phi(k)=z^{-1}\left(z[z \mathbf{I}-\mathbf{A}]^{-1}\right)=\mathbf{A}^{k} \\
y(k) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \mathbf{x}(k)
\end{aligned}
$$

- Now that we have the state-space representation, we can solve for $Y(z)$ and then $y(k)$:

$$
\begin{gathered}
{[z \mathbf{I}-\mathbf{A}]=\left[\begin{array}{cc}
z & -1 \\
2 & z-3
\end{array}\right] \quad|z \mathbf{I}-\mathbf{A}|=z^{2}-3 z+2} \\
{[z \mathbf{I}-\mathbf{A}]^{-1}=\frac{1}{z^{2}-3 z+2}\left[\begin{array}{cc}
z-3 & 1 \\
-2 & z
\end{array}\right]}
\end{gathered}
$$

- Recall our general solution: $\mathbf{X}(z)=z[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{x}(0)+[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{B U}(z)$ In this example we have $x(0)=0$ (after all we started with a transfer function which implicitly assumes $x(0)=0)$.

$$
\begin{aligned}
\mathbf{X}(z) & =[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{B} U(z) \\
& =\frac{1}{z^{2}-3 z+2}\left[\begin{array}{cc}
z-3 & 1 \\
-2 & z
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] U(z) \\
& =\frac{1}{z^{2}-3 z+2}\left[\begin{array}{l}
1 \\
z
\end{array}\right] U(z)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{X}(z) & =[z \mathbf{I}-\mathbf{A}]^{-1} \mathbf{B} U(z) \\
& =\frac{1}{z^{2}-3 z+2}\left[\begin{array}{cc}
z-3 & 1 \\
-2 & z
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] U(z) \\
& =\frac{1}{z^{2}-3 z+2}\left[\begin{array}{l}
1 \\
z
\end{array}\right] U(z)
\end{aligned}
$$

- Lets assume we have a step input. The z-transform of the step function is $z /(z-1)$. We fill this into the above solution and into $Y(z)=C X(z)$:

$$
Y(z)=\mathbf{C X}(z)=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{z}{(z-1)\left(z^{2}-3 z+2\right)} \\
\frac{z^{2}}{(z-1)\left(z^{2}-3 z+2\right)}
\end{array}\right]
$$

- Applying partial fraction expansion and then the inverse z-transform:

$$
\begin{gathered}
Y(z)=\frac{z^{2}}{(z-1)^{2}(z-2)}=\frac{-z}{(z-1)^{2}}+\frac{-2 z}{z-1}+\frac{2 z}{z-2} \\
y(k)=-k-2+2(2)^{k}
\end{gathered}
$$

- The output is the sequence $0,1,4,11,26, \ldots$

Solution for Sampled Data Systems

- The solution just presented works for purely DT systems, but what if the plant is CT? There are a couple of possibilities (we take the bolded path):
- Design controller in CT then translate to DT
- Using approximate mappings from s-domain to z-domain (e.g. Tustin's method, MPZ)
- Translate CT plant model to DT, then design controller in DT
- Use approximate mappings from from s- to z- (as above)
- Or...
- Use the exact mapping for state-space representations we are about to discuss
- [We are following the solution presented in section 4.2 of "Linear System Theory and Design" by Chen]
- Assume we begin with a purely CT state-space representation and its solution, developed earlier this term:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \\
& \mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{aligned} \quad \mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d \tau
$$

- The input $u(t)$ will be produced by a computer and will be held constant throughout each sample period:

$$
\mathbf{u}(t)=\mathbf{u}(k T)=: \mathbf{u}[k] \quad \text { for } k T \leq t<(k+1) T
$$

- We evaluate our CT solution at discrete time steps $t=k T$ and t

$$
=(k+1) T
$$

$$
\mathbf{x}[k]:=\mathbf{x}(k T)=e^{\mathbf{A} k T} \mathbf{x}(0)+\int_{0}^{k T} e^{\mathbf{A}(k T-\tau)} \mathbf{B u}(\tau) d \tau
$$

$$
\mathbf{x}[k+1]:=\mathbf{x}((k+1) T)=e^{\mathbf{A}(k+1) T} \mathbf{x}(0)+\int_{0}^{(k+1) T} e^{\mathbf{A}(k+1) T-\tau)} \mathbf{B u}(\tau) d \tau
$$

$$
\begin{gathered}
\mathbf{x}[k]:=\mathbf{x}(k T)=e^{\mathbf{A} k T} \mathbf{x}(0)+\int_{0}^{k T} e^{\mathbf{A}(k T-\tau)} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}[k+1]:=\mathbf{x}((k+1) T)=e^{\mathbf{A}(k+1) T} \mathbf{x}(0)+\int_{0}^{(k+1) T} e^{\mathbf{A}(k+1) T-\tau)} \mathbf{B u}(\tau) d \tau
\end{gathered}
$$

- We can re-write the second equation as follows and then recognize that it contains the first:

$$
\begin{aligned}
\mathbf{x}[k+1]= & e^{\mathbf{A} T}\left[e^{\mathbf{A} k T} \mathbf{x}(0)+\int_{0}^{k T} e^{\mathbf{A}(k T-\tau)} \mathbf{B u}(\tau) d \tau\right] \\
& +\int_{k T}^{(k+1) T} e^{\mathbf{A}(k T+T-\tau)} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}[k+1]= & e^{\mathbf{A} T} \mathbf{x}[k]+\left(\int_{0}^{T} e^{\mathbf{A} \alpha} d \alpha\right) \mathbf{B u}[k]
\end{aligned}
$$

- where $\alpha=k T+T-\tau$. We have also substituted in our DT $u[k]$ which is constant within the integrated interval and can therefore be factored out.

$$
\mathbf{x}[k+1]=e^{\mathbf{A T}} \mathbf{x}[k]+\left(\int_{0}^{T} e^{\mathbf{A} \alpha} d \alpha\right) \mathbf{B u}[k]
$$

- This is now a purely DT representation. We can establish a correspondence between the given CT system ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) and its DT equivalent $\left(A_{d}, B_{d}, C_{d}, D_{d}\right)$:

$$
\begin{gathered}
\mathbf{x}[k+1]=\mathbf{A}_{d} \mathbf{x}[k]+\mathbf{B}_{d} \mathbf{u}[k] \\
\mathbf{y}[k]=\mathbf{C}_{d} \mathbf{x}[k]+\mathbf{D}_{d} \mathbf{u}[k] \\
\mathbf{A}_{d}=e^{\mathbf{A} T} \quad \mathbf{B}_{d}=\left(\int_{0}^{T} e^{\mathbf{A} \tau} d \tau\right) \mathbf{B} \quad \mathbf{C}_{d}=\mathbf{C} \quad \mathbf{D}_{d}=\mathbf{D}
\end{gathered}
$$

- The only practical issue is in computing B_{d}. A few short manipulations (see Chen for details) lead to the following:

$$
\mathbf{B}_{d}=\mathbf{A}^{-1}\left(\mathbf{A}_{d}-\mathbf{I}\right) \mathbf{B} \quad \text { (if } \mathbf{A} \text { is nonsingular) }
$$

Example

- Assume we start with the following transfer function (appropriate form for a servomotor):

$$
G(s)=\frac{10}{s^{2}+s}
$$

- We can obtain the CT state space model quite directly

$$
\begin{aligned}
& \dot{\mathrm{x}}(t)=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] \mathrm{x}(t)+\left[\begin{array}{c}
0 \\
10
\end{array}\right] u(t) \\
& \mathrm{y}(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathrm{x}(t)
\end{aligned}
$$

- Simply apply our derived DT equivalents. We'll say that T $=0.1 \mathrm{~s}$

$$
\mathbf{A}_{d}=e^{\mathbf{A} T} \quad \mathbf{B}_{d}=\mathbf{A}^{-1}\left(\mathbf{A}_{d}-\mathbf{I}\right) \mathbf{B} \quad \mathbf{C}_{d}=\mathbf{C} \quad \mathbf{D}_{d}=\mathbf{D}
$$

- Unfortunately, A is singular, so this doesn't work! Phillips and Parr present another method which does work, but we'll just use Matlab.

Conversion from CT to DT using Matlab

- The function c2d converts from CT to DT state-space representations. In fact you have been using this all along, since Matlab is inherently DT (it runs on a computer).

c2d Converts continuous-time dynamic system to discrete time.

```
SYSD = c2d(SYSC,TS,METHOD) computes a discrete-time model SYSD with
    sampling time TS that approximates the continuous-time model SYSC.
    The string METHOD selects the discretization method among the following:
        'zoh' Zero-order hold on the inputs
        'foh' Linear interpolation of inputs
        'impulse' Impulse-invariant discretization
        'tustin' Bilinear (Tustin) approximation.
        'matched' Matched pole-zero method (for SISO systems only).
    The default is 'zoh' when METHOD is omitted. The sampling time TS should
    be specified in the time units of SYSC (see "TimeUnit" property).
```

- For the example we execute: $[A d, B d]=c 2 d(A, B, 0.1)$

$$
\begin{aligned}
\mathbf{x}(k+1) & =\left[\begin{array}{ll}
1 & 0.0952 \\
0 & 0.905
\end{array}\right] \mathbf{x}(k)+\left[\begin{array}{l}
0.0484 \\
0.952
\end{array}\right] m(k) \\
y(k) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}(k)
\end{aligned}
$$

This is the step response of the original system. Note that the system is a DC motor so as we continue to apply a step input it is quite reasonable for the output (motor shaft angle) to increase continually.

This is the step response of the converted DT system. Note that $\mathrm{T}=0.1 \mathrm{~s}$, so the responses do match.

