ENGI 7825: Linear Algebra Review Linear Combinations, Span, and Independence

Adapted from Notes Developed by Martin Scharlemann

June 15, 2016

Definition

Suppose $\left\{c_{1}, c_{2} \ldots c_{k}\right\}$ are all real numbers.
The vector

$$
\vec{y}=c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}
$$

is called a linear combination of the vectors $\left\{\vec{v}_{1}, \overrightarrow{v_{2}} \ldots \vec{v}_{k}\right\}$.

Sample problem:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}, \vec{b}\right\}$ in \mathbb{R}^{m}, find real numbers $\left\{c_{1}, c_{2} \ldots c_{n}\right\}$ so that

$$
c_{1} \vec{a}_{1}+\cdots+c_{n} \vec{a}_{n}=\vec{b} .
$$

$$
c_{1} \vec{a}_{1}+\cdots+c_{n} \vec{a}_{n}=\vec{b}:
$$

Solving this system requires solving these m linear equations:

$$
\begin{aligned}
& a_{11} c_{1}+\ldots+a_{1 n} c_{n}=b_{1} \\
& a_{21} c_{1}+\ldots+a_{2 n} c_{n}=b_{2}
\end{aligned}
$$

$$
a_{m 1} c_{1}+\ldots+a_{m n} c_{n}=b_{m}
$$

The system has augmented matrix

$$
\left[\begin{array}{cccc:c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

Our goal now is to solve this system by transforming this augmented matrix into reduced echelon form (zeroes above pivots).

Example:

Suppose

$$
\vec{a}_{1}=\left[\begin{array}{l}
0 \\
2 \\
4 \\
8
\end{array}\right] \quad \vec{a}_{2}=\left[\begin{array}{l}
0 \\
2 \\
4 \\
8
\end{array}\right] \quad \vec{a}_{3}=\left[\begin{array}{c}
6 \\
-1 \\
1 \\
-1
\end{array}\right] \quad \vec{a}_{4}=\left[\begin{array}{c}
0 \\
6 \\
10 \\
26
\end{array}\right]
$$

and want to find $c_{1}, c_{2}, c_{3}, c_{4}$ so that

$$
c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}+c_{3} \vec{a}_{3}+c_{4} \vec{a}_{4}=\left[\begin{array}{c}
12 \\
4 \\
13 \\
23
\end{array}\right]
$$

This translates to the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{cccc:c}
0 & 0 & 6 & 0 & 12 \\
2 & 2 & -1 & 6 & 4 \\
4 & 4 & 1 & 10 & 13 \\
8 & 8 & -1 & 26 & 23
\end{array}\right]
$$

applying Gauss-Jordan elimination leads to:

$$
\left[\begin{array}{llll:l}
1 & 1 & 0 & 0 & \frac{3}{2} \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and so has general solution

$$
c_{2}=\text { anything, } c_{1}=\frac{3}{2}-c_{2}, c_{3}=2, c_{4}=\frac{1}{2}
$$

Definition

Given a collection $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ of vectors in \mathbb{R}^{m}, the set of all linear combinations of these vectors, that is all vectors that can be written as

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}
$$

for some $c_{1}, \ldots, c_{k} \in \mathbb{R}$ is denoted

$$
\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}
$$

and is called the span of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.

Easy example: If $k=1$ so there is only one vector \vec{v}, then Span $\{\vec{v}\}$ is just all vectors that are multiples of \vec{v}. That is, $\operatorname{Span}\{\vec{v}\}=\{c \vec{v} \mid c \in \mathbb{R}\}$

When there is only one vector \vec{v} then $\operatorname{Span}\{\vec{v}\}=\{c \vec{v} \mid c \in \mathbb{R}\}$ is just the line that contains both $\overrightarrow{0}($ take $c=0)$ and $\vec{v}($ take $c=1)$.

With two vectors \vec{u} and $\vec{v}, \operatorname{Span}\{\vec{u}, \vec{v}\}=\left\{c_{1} \vec{u}+c_{2} \vec{v}\right\}$ pictured via the parallelogram rule (Span $=$ entire plane; $c_{i} \geq 0$ highlighted):

Repeat of example above: The matrix and reduced echelon form:

$$
\left[\begin{array}{ccccc}
0 & 0 & 6 & 0 & 12 \\
2 & 2 & -1 & 6 & 4 \\
4 & 4 & 1 & 10 & 13 \\
8 & 8 & -1 & 26 & 23
\end{array}\right] \rightarrow\left[\begin{array}{llll:l}
1 & 1 & 0 & 0 & \frac{3}{2} \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

has general solution:

$$
c_{2}=\text { anything, } c_{1}=\frac{3}{2}-c_{2}, c_{3}=2, c_{4}=\frac{1}{2}
$$

We can write this as

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
\frac{3}{2} \\
0 \\
2 \\
\frac{1}{2}
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

So we can think of the set of all solutions as

$$
\left[\begin{array}{l}
\frac{3}{2} \\
0 \\
2 \\
\frac{1}{2}
\end{array}\right]+\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

So we can picture the solution as a line in the direction of the second vector, going through the point given by the first vector (but in \mathbb{R}^{4} !)

Example with two free variables $\left\{x_{2}, x_{4}\right\}$

$$
\left[\begin{array}{lllll:l}
1 & 1 & 0 & \pi & 0 & \frac{3}{2} \\
0 & 0 & 1 & e & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=\frac{3}{2}-x_{2}-\pi x_{4} \\
& x_{3}=\frac{2}{2}-e x_{4} \\
& x_{5}=\frac{1}{2}
\end{aligned}
$$

which can be written:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
\frac{3}{2} \\
0 \\
2 \\
0 \\
\frac{1}{2}
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-\pi \\
0 \\
-e \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{3}{2} \\
0 \\
2 \\
0 \\
\frac{1}{2}
\end{array}\right]+\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-\pi \\
0 \\
-e \\
1 \\
0
\end{array}\right]\right\}
$$

Background thoughts:

If two non-trivial vectors $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}$ both lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ is just that line.

On the other hand, if they don't lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ consists of an entire plane.

So the span of two vectors may be a plane, or it could be something simpler: either a line, or even just $\overrightarrow{0}$ in the case that $\overrightarrow{x_{1}}=\overrightarrow{0}=\vec{x}_{2}$.

Similarly, if three non-trivial vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3} \in \mathbb{R}^{3}$ all lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ is just that line.

If they don't all lie on the same line, but lie on the same plane, then $\operatorname{Span}\left\{\vec{x}_{1}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}\right\}$ is just that plane.

If they don't all lie in the same plane, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ is \mathbb{R}^{3}.

Definition

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly independent if and only if the only solution to the equation

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is the solution $c_{i}=0$ for $1 \leq i \leq k$.
Conversely, the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent if there are real numbers c_{1}, \ldots, c_{k}, not all zero, such that

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0} .
$$

Idea: if the set is linearly independent, then the span is as big as possible.

If the set is linearly dependent then the span is somehow "thinner"; you could even remove some vectors and not change the span.

In pictures:

$\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}\right\}$ linearly dependent.

$\left\{\vec{v}_{1}, \vec{v}_{2}, \overrightarrow{v_{3}}\right\}$ linearly independent.

Property 1: If even a single $\vec{v}_{i}=\overrightarrow{0}$ then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. Why?

Suppose that $\vec{v}_{1}=\overrightarrow{0}$. Then

$$
1 \vec{v}_{1}+0 \vec{v}_{2}+0 \vec{v}_{3} \cdots+0 \vec{v}_{k}=\overrightarrow{0}
$$

yet $c_{1}=1 \neq 0$.

Property 2: If even a single \vec{v}_{i} is a multiple of a different \vec{v}_{j} then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. Example: Let $\vec{v}_{2}=5 \vec{v}_{1}$. Then

$$
5 \vec{v}_{1}-\vec{v}_{2}+0 \vec{v}_{3} \cdots+0 \vec{v}_{k}=\overrightarrow{0}
$$

yet $c_{1}=5 \neq 0$ (and also $c_{2}=-1 \neq 0$).

Property 3: If any subset of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent, so is the whole set.

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]\right\}
$$

A) Dependent since they are $2 d$ vectors in \mathbb{R}^{3} and $2<3$.
B) Independent since they are $2 d$ vectors in \mathbb{R}^{3} and $2<3$.
C) Dependent because one is a multiple of the other.
D) Independent because neither is a multiple of the other.
E) Independent because one is a multiple of the other.

Answer: D

Question: Is this set of vectors linearly dependent, or linearly independent? (There are two correct answers.)

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
-13
\end{array}\right]\right\}
$$

A) Independent since they are 3 vectors in \mathbb{R}^{3}.
B) Dependent because one is a multiple of the other.
C) Dependent because a subset is dependent.
D) Independent because a subset is independent.

Answer: B and C

