ENGI 7825: Linear Algebra Review Linear Combinations, Span, and Independence

Adapted from Notes Developed by Martin Scharlemann

June 15, 2016

<ロト <回 > < 目 > < 目 > < 目 > < 目 > < 目) < () < 1/18

Definition

Suppose $\{c_1, c_2 \dots c_k\}$ are all real numbers. The vector

$$\vec{y} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k$$

is called a linear combination of the vectors $\{\vec{v}_1, \vec{v}_2 \dots \vec{v}_k\}$.

Sample problem:

Given vectors $\{\vec{a}_1, \vec{a}_2 \dots \vec{a}_n, \vec{b}\}$ in \mathbb{R}^m , find real numbers $\{c_1, c_2 \dots c_n\}$ so that

$$c_1\vec{a_1}+\cdots+c_n\vec{a_n}=\vec{b}.$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のので 2/18

$$c_1ec{a_1}+\cdots+c_nec{a_n}=ec{b}$$
 :

Solving this system requires solving these m linear equations:

$$a_{11}c_1 + \ldots + a_{1n}c_n = b_1$$
$$a_{21}c_1 + \ldots + a_{2n}c_n = b_2$$
$$\vdots$$
$$a_{m1}c_1 + \ldots + a_{mn}c_n = b_m$$

The system has augmented matrix

a ₁₁	<i>a</i> ₁₂		a _{1n}	b_1
a ₂₁	a ₂₂		a _{2n}	<i>b</i> ₂
:	÷	۰.	÷	:
a _{m1}	a _{m2}		a _{mn}	b _m

Our goal now is to solve this system by transforming this augmented matrix into reduced echelon form (zeroes above pivots).

590

(日) (國) (필) (필) (필) (필)

Example:

Suppose

$$\vec{a}_{1} = \begin{bmatrix} 0 \\ 2 \\ 4 \\ 8 \end{bmatrix} \quad \vec{a}_{2} = \begin{bmatrix} 0 \\ 2 \\ 4 \\ 8 \end{bmatrix} \quad \vec{a}_{3} = \begin{bmatrix} 6 \\ -1 \\ 1 \\ -1 \end{bmatrix} \quad \vec{a}_{4} = \begin{bmatrix} 0 \\ 6 \\ 10 \\ 26 \end{bmatrix}$$

and want to find c_1, c_2, c_3, c_4 so that

$$c_1\vec{a}_1 + c_2\vec{a}_2 + c_3\vec{a}_3 + c_4\vec{a}_4 = \begin{bmatrix} 12\\4\\13\\23 \end{bmatrix}$$

・ロン ・四 と ・ ヨ と ・ 日 と

This translates to the system of linear equations whose augmented matrix is

$$\begin{bmatrix} 0 & 0 & 6 & 0 & | & 12 \\ 2 & 2 & -1 & 6 & | & 4 \\ 4 & 4 & 1 & 10 & | & 13 \\ 8 & 8 & -1 & 26 & | & 23 \end{bmatrix}$$

applying Gauss-Jordan elimination leads to:

and so has general solution

$$c_2 = anything, c_1 = \frac{3}{2} - c_2, c_3 = 2, c_4 = \frac{1}{2}$$

Definition

Given a collection $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ of vectors in \mathbb{R}^m , the set of all linear combinations of these vectors, that is all vectors that can be written as

$$c_1\vec{v}_1+\cdots+c_k\vec{v}_k$$

for some $c_1, \ldots, c_k \in \mathbb{R}$ is denoted

Span $\{\vec{v}_1, \ldots, \vec{v}_k\}$

and is called the span of $\{\vec{v_1}, \ldots, \vec{v_k}\}$.

Easy example: If k = 1 so there is only one vector \vec{v} , then Span $\{\vec{v}\}$ is just all vectors that are multiples of \vec{v} . That is, Span $\{\vec{v}\} = \{c\vec{v} \mid c \in \mathbb{R}\}$

When there is only one vector \vec{v} then $\text{Span}\{\vec{v}\} = \{c\vec{v} \mid c \in \mathbb{R}\}\$ is just the line that contains both $\vec{0}$ (take c = 0) and \vec{v} (take c = 1).

With two vectors \vec{u} and \vec{v} , Span $\{\vec{u}, \vec{v}\} = \{c_1\vec{u} + c_2\vec{v}\}$ pictured via the parallelogram rule (Span = entire plane; $c_i \ge 0$ highlighted):

・ロン ・四 と ・ ヨ と ・ ヨ と

Repeat of example above: The matrix and reduced echelon form:

$$\begin{bmatrix} 0 & 0 & 6 & 0 & 12 \\ 2 & 2 & -1 & 6 & 4 \\ 4 & 4 & 1 & 10 & 13 \\ 8 & 8 & -1 & 26 & 23 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & | & \frac{3}{2} \\ 0 & 0 & 1 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & \frac{1}{2} \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

has general solution:

$$c_2 = anything, \ c_1 = \frac{3}{2} - c_2, c_3 = 2, c_4 = \frac{1}{2}$$

We can write this as

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

≣ ∽ ۹. 8/18 So we can think of the set of all solutions as

$$\begin{bmatrix} \frac{3}{2} \\ 0 \\ 2 \\ \frac{1}{2} \end{bmatrix} + \operatorname{Span} \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

So we can picture the solution as a line in the direction of the second vector, going through the point given by the first vector (but in \mathbb{R}^4 !)

Example with two free variables $\{x_2, x_4\}$

$$\begin{bmatrix} 1 & 1 & 0 & \pi & 0 & \frac{3}{2} \\ 0 & 0 & 1 & e & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \qquad \begin{aligned} x_1 &= \frac{3}{2} - x_2 - \pi x_4 \\ x_3 &= 2 & -ex_4 \\ x_5 &= \frac{1}{2} \end{aligned}$$

which can be written:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 0 \\ 2 \\ 0 \\ \frac{1}{2} \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -\pi \\ 0 \\ -e \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ 0 \\ 2 \\ 0 \\ \frac{1}{2} \end{bmatrix} + \text{Span} \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -\pi \\ 0 \\ -e \\ 1 \\ 0 \end{bmatrix} \right\}$$

Background thoughts:

If two non-trivial vectors $\vec{x_1}, \vec{x_2}$ both lie on the same line, then $Span{\vec{x_1}, \vec{x_2}}$ is just that line.

On the other hand, if they *don't* lie on the same line, then $Span{\vec{x_1}, \vec{x_2}}$ consists of an entire plane.

So the span of two vectors may be a plane, or it could be something simpler: either a line, or even just $\vec{0}$ in the case that $\vec{x_1} = \vec{0} = \vec{x_2}$.

Similarly, if *three* non-trivial vectors $\vec{x_1}, \vec{x_2}, \vec{x_3} \in \mathbb{R}^3$ all lie on the same line, then $Span{\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}}$ is just that line.

If they don't all lie on the same line, but lie on the same plane, then $Span{\vec{x_1}, \vec{x_2}, \vec{x_3}}$ is just that plane.

If they don't all lie in the same plane, then $Span\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ is \mathbb{R}^3 .

Definition

A set of vectors $\{\vec{v}_1, \ldots, \vec{v}_k\}$ in \mathbb{R}^m is linearly independent if and only if the only solution to the equation

$$c_1\vec{v}_1+\cdots+c_k\vec{v}_k=\vec{0}$$

is the solution $c_i = 0$ for $1 \le i \le k$. Conversely, the set of vectors $\{\vec{v_1}, \ldots, \vec{v_k}\}$ is linearly dependent if there are real numbers $c_1, ..., c_k$, not all zero, such that

$$c_1\vec{v}_1+\cdots+c_k\vec{v}_k=\vec{0}.$$

Idea: if the set is linearly independent, then the span is as big as possible.

If the set is linearly dependent then the span is somehow "thinner"; you could even remove some vectors and not change the span.

・ロン ・回 と ・ 回 と ・ 回 と

In pictures:

 $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ linearly dependent. The set of the set

 $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ linearly independent.

Property 1: If even a single $\vec{v}_i = \vec{0}$ then $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is linearly dependent. Why?

Suppose that $\vec{v_1} = \vec{0}$. Then

$$1\vec{v_1} + 0\vec{v_2} + 0\vec{v_3}\cdots + 0\vec{v_k} = \vec{0}$$

yet $c_1 = 1 \neq 0$.

Property 2: If even a single $\vec{v_i}$ is a multiple of a different $\vec{v_j}$ then $\{\vec{v_1}, \ldots, \vec{v_k}\}$ is linearly dependent. Example: Let $\vec{v_2} = 5\vec{v_1}$. Then

$$5\vec{v_1} - \vec{v_2} + 0\vec{v_3} \cdots + 0\vec{v_k} = \vec{0}$$

yet $c_1 = 5 \neq 0$ (and also $c_2 = -1 \neq 0$).

Property 3: If any subset of $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is linearly dependent, so is the whole set.

Question: Is this set of vectors linearly dependent, or linearly independent?

$$\left\{ \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 3\\4\\5 \end{bmatrix} \right\}$$

- A) Dependent since they are 2d vectors in \mathbb{R}^3 and 2 < 3.
- B) Independent since they are 2d vectors in \mathbb{R}^3 and 2 < 3.
- C) Dependent because one is a multiple of the other.
- D) Independent because neither is a multiple of the other.
- $\mathsf{E})$ Independent because one is a multiple of the other.

Answer: D

Question: Is this set of vectors linearly dependent, or linearly independent? (There are two correct answers.)

$$\left\{ \begin{bmatrix} 1\\2\\5 \end{bmatrix}, \begin{bmatrix} 2\\4\\10 \end{bmatrix}, \begin{bmatrix} -3\\-5\\-13 \end{bmatrix} \right\}$$

- A) Independent since they are 3 vectors in \mathbb{R}^3 .
- B) Dependent because one is a multiple of the other.
- C) Dependent because a subset is dependent.
- D) Independent because a subset is independent.

Answer: B and C