
1

Threads and Concurrency in 
Java: Part 2



© 2003--09 T. S. Norvell Memorial University Threads. Slide 2

Waiting

n Synchronized methods introduce one kind of 
coordination between threads.

n Sometimes we need a thread to wait until a 
specific condition has arisen.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 3

Waiting by “Polling”
n For example in a Counter class we might want to 

wait until the count is 0 or less.
n We could do this 

class Counter {
private int count ;

public Counter( int count ) { this.count = count ; }

synchronized void decrement() { count -= 1; }

synchronized int getCount() { return count ; }

void waitForZeroOrLess() { // Polling loop
while( getCount() > 0 ) /*do nothing*/;

} 
}

Note that 
waitForZeroOrLess

is not
synchronized



© 2003--09 T. S. Norvell Memorial University Threads. Slide 4

Waiting by “Polling”

n Slightly improving this we can write

void waitForZeroOrLess() { // Polling loop
while( getCount() > 0 )

Thread.yield();  
}

which keeps the thread from hogging the CPU while 
polling.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 5

Waiting by wait and notifyAll

n Better, we can have a thread wait until it is notified 
that the condition has (or may have) come about.

n While waiting, the thread relinquishes ownership 
and waits until some later time.

n To wait, a thread sends the object a wait message.

n To allow other threads to stop waiting, threads 
sends a notifyAll message to the object.

n wait and notifyAll are methods of class Object.



The “Room metaphor”

© 2003--09 T. S. Norvell Memorial University Threads. Slide 6

The room

The antechamber

T1

T2
W

ai
tin

g 
ro

om

When a thread 
in the room 
sends a wait 
message, it 
leaves the 
room and 
enters the 
waiting room.

Later another 
thread enters.

It sends a 
notifyAll
message.

All threads in 
the waiting 
room move to 
the 
antechamber.

And so they 
can reenter 
when the 
room is 
empty.

Add a waiting room



© 2003--09 T. S. Norvell Memorial University Threads. Slide 7

wait and notifyAll example.
class Counter {

private int count ;

public Counter( int count ) { this.count = count ; }

synchronized void decrement() {
count -= 1 ;
if( count <= 0 ) notifyAll() ;

}

synchronized void waitForZero() {
while( count > 0 ) {

try { wait(); }
catch( InterruptedException e ) {}

} 
} 

}

Note that 
waitForZeroOrLess

is
synchronized



© 2003--09 T. S. Norvell Memorial University Threads. Slide 8

A possible sequence

n One thread
q Calls waitForZero enters the room
q Sees count is 1.
q calls wait, enters the waiting room
q waits in waiting room
q …
q …
q …
q …
q waits in antechamber
q …
q …
q reenters the room
q returns from wait
q sees count is 0 and returns

n Another thread

Calls decrement enters the room.
q count--
q call notifyAl,l moving other  

thread to wait queue for the 
lock

q returns leaving the room



© 2003--09 T. S. Norvell Memorial University Threads. Slide 9

Passing messages

n We want to pass messages between any number of 
producers and consumers executing on any number 
of threads.

producer producer producer consumer consumer

:Mailbox

send(0) receive()

0
{}



© 2003--09 T. S. Norvell Memorial University Threads. Slide 10

Passing messages

n We want to pass messages between threads so that
q Each message is received no more than once
q No message is overwritten before it is received.
q A receiver may have to wait until a new message is sent
q A sender may have to wait until there is room in the queue
q Up to 100 messages can be sent but not yet received.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 11

Passing messages

n Receivers may need to wait.
q Suppose the mailbox initially has no messages

producer producer producer consumer consumer

:Mailbox

receive()

1

send(1)

{}



© 2003--09 T. S. Norvell Memorial University Threads. Slide 12

Passing messages

n Producers may need to wait.
q Suppose the capacity is 5 and the mailbox is full

producer producer producer consumer consumer

:Mailbox

receive()

1

send(6)

{}
2 3 4 56



© 2003--09 T. S. Norvell Memorial University Threads. Slide 13

Passing messages – incomplete
class Mailbox<MessageType>{

private static final int CAP = 100 ;
private Queue<MessageType> q = new Queue<MessageType>() ;
// invariant: q.size() <= CAP

public synchronized void send(MessageType mess) {
// wait until q.size()< CAP

public synchronized MessageType receive() {
// wait until q.size() > 0 

}

}

q.put( mess );

return q.take(); 

To do

To do



© 2003--09 T. S. Norvell Memorial University Threads. Slide 14

Passing messages – add waits
class Mailbox<MessageType>{

private static final int CAP = 100 ;
private Queue<MessageType> q = new Queue<MessageType>() ;
// invariant: q.size() <= CAP

public synchronized void send(MessageType mess) {
// wait until q.size()< CAP

public synchronized MessageType receive() {
// wait until q.size() > 0 

while( q.size()==CAP ) {
try { wait() ; } catch( InterruptedException e ) {} 

}

while( q.size()==0 ) {
try { wait() ; } catch( InterruptedExceptione ) {} 

}

q.put( mess ) ;

return q.take()  

To do

To do

}

}



notifyAll() ;

Passing messages – add notifications
class Mailbox<MessageType>{

private static final int CAP = 100 ;
private Queue<MessageType> q = new Queue<MessageType>() ;
// invariant: q.size() <= CAP

public synchronized void send(MessageType mess) {
// wait until q.size()< CAP

public synchronized MessageType receive() {
// wait until q.size() > 0 

while( q.size()==CAP ) {
try { wait() ; } catch( InterruptedException e ) {} 

}

while( q.size()==0 ) {
try { wait() ; } catch( InterruptedExceptione ) {} 

}

q.put( mess );

return q.take(); notifyAll();

Done

}

}



© 2003--09 T. S. Norvell Memorial University Threads. Slide 16

Even better than wait and notifyAll

n As software gets more complex, using “wait” 
and “notifyAll” can be a bit awkward and is 
easy to mess up.

n An improvement is to use Dr. Norvell’s 
“monitor” package.

n See 
http://www.engr.mun.ca/~theo/Misc/monitors/monitors.html



© 2003--09 T. S. Norvell Memorial University Threads. Slide 17

Deadlock

n While waiting can solve “safety” issues
q (e.g. ensuring noncorruption of data, nondup-

lication of messages, nonloss of messages),
n it can cause “liveness” problems.
n In particular

q if one thread is waiting for another to do 
something, and

q the other thread is waiting for the first to do 
something,

q then we have “deadlock”



© 2003--09 T. S. Norvell Memorial University Threads. Slide 18

Deadlock Example

n Suppose we have a bank account class
class Account {

private int balance = 0.0;

public synchronized void addFunds( int amount ) {
balance += amount;

}
public void transfer ( int amount, Account toAccount ) {

if( balance >= amount ) {
toAccount.addFunds( amount );
balance -= amount;

} else { … } }
…

}



© 2003--09 T. S. Norvell Memorial University Threads. Slide 19

Deadlock Example

n There is a subtle problem here.
n The intent is that one should not be able to 

transfer out of an account more money than it 
has. (A safety problem.)

n But, if two threads attempt to transfer from 
the same account at about the same time, 
then they might both succeed, even though 
the final balance will be negative.

n To fix this, we make transfer synchronized.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 20

Deadlock Example

class Account {
private int balance = 0;

public synchronized void addFunds( int amount ) {
balance += amount;

}
public synchronized void transfer (int amount, Account toAccount){

if( balance >= amount ) {
toAccount.addFunds( amount );
balance -= amount;

} else { … } }
…

}



© 2003--09 T. S. Norvell Memorial University Threads. Slide 21

Deadlock Example

n But now deadlock is possible.
n Suppose thread 0 tries to transfer from 

account x to account y.
n At roughly the same time thread 1 attempts to 

transfer from account y to account x



© 2003--09 T. S. Norvell Memorial University Threads. Slide 22

A possible sequence

n Thread 0 
q calls x.transfer(100, y)
q obtains a lock on x
q calls y.addFunds()
q waits for lock on y
q waits for lock on y
q waits for lock on y
q waits for lock on y
q ad infinitum

n Thread 1
q calls y.transfer( 50, x )
q obtains a lock on y
q calls x.addFunds()
q waits for lock on x
q waits for lock on x
q waits for lock on x
q waits for lock on x
q ad infinitum

The Threads are now deadlocked!



© 2003--09 T. S. Norvell Memorial University Threads. Slide 23

A solution to deadlock
n One solution is to always lock objects in a particular 

order.
n e.g. give each lockable object a globally unique #
n The following example uses synchronized blocks

public void transfer ( int amount, Account toAccount ) {
boolean choice =  this.serialNum() <= toAccount. serialNum() ;
synchronized( choice ? this : toAccount ) {

synchronized( choice ? toAccount : this ) {
if( balance >= amount ) {

toAccount.addFunds( amount ) ;
balance -= amount;

} else { … } } } }
}



© 2003--09 T. S. Norvell Memorial University Threads. Slide 24

Testing Concurrent Programs

n You can not effectively test concurrent 
programs to show that they are error free

n Because of race conditions, a test may pass 
millions of times “by chance”.

n Tests that fail are useful. They tell us we 
have a bug.

n Tests that pass only tell us that it is possible 
for the code to compute the correct result.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 25

Testing: A True Story

n I wanted to illustrate how race conditions can 
cause data corruption.

n So I wrote a program with two threads 
sharing an int variable x.
q Initially x was set to 0
q One thread incremented x a thousand times
q The other thread decremented x a thousand 

times.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 26

Testing: A True Story

class Incrementor extends Thread {
public void run() {

for(int i=0 ; i < 1000; ++i) ++x ; }
}
class Decrementor extends Thread {

public void run() {
for(int i=0 ; i < 1000; ++i) --x ; }

}



© 2003--09 T. S. Norvell Memorial University Threads. Slide 27

Testing: A True Story
n I ran the two threads concurrently

System.out.println( "The initial value of x is: " + x ) ;

Thread p = new Incrementor() ;
Thread q = new Decrementor() ;
p.start() ; q.start();

// Wait for threads to finish using “joins” (not shown)

System.out.println( "After "+1000+" increments and "+1000+" 
decrements" ) ;

System.out.println( "the final value of x is: " + x ) ;

n What do you think happened?



© 2003--09 T. S. Norvell Memorial University Threads. Slide 28

Testing: A True Story

n Here’s the output:
The initial value of x is: 0
After 1000 increments and 1000 decrements
the final value of x is: 0

n Even though I deliberately wrote a faulty 
program and gave it 1 thousand chances to 
fail the test, it passed anyway..
q I tried 10,000. Then 100,000.
q Same result



© 2003--09 T. S. Norvell Memorial University Threads. Slide 29

Testing: A True Story

n And why did it pass?
q The JVM happened to give each thread time 

slices so long that the incrementing thread 
completed its 100,000 increments before the main 
thread had a chance to even start the 
decrementing thread.

n Changing to 1,000,000 increments and 
decrements revealed the bug.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 30

Testing: A True Story

n I had fallen victim to optimism.
n I had optimistically assumed that such an 

obvious bug would cause a thorough test to fail.
n If tests designed to reveal blatant bugs, which 

we know are in the program, fail to reveal them, 
should we expect testing to reliably reveal subtle 
bugs we do not know about?



© 2003--09 T. S. Norvell Memorial University Threads. Slide 31

If you can’t test, then what?

n The good news is that
q although testing is insufficient to reveal bugs,
q there are design and analysis techniques that 

allow you to prove your programs correct.



© 2003--09 T. S. Norvell Memorial University Threads. Slide 32

Concurrency

n What every computer engineer needs to 
know about concurrency:
Concurrency is to untrained programmers

as matches are to small children.
It is all too easy to get burned.

q Race conditions
q Deadlock
q Insufficiency of testing



© 2003--09 T. S. Norvell Memorial University Threads. Slide 33

Summary of terminology
n concurrency: multiple agents running at the same time, interacting
n thread: an independent path of control
n Thread: a Java class representing threads
n race condition: a hazard caused by the unpredictability of execution 

timing
n synchronized access: locking of objects to obtain exclusive 

access
n wait and notifyAll: threads may wait until notified
n deadlock: a cycle of threads mutually waiting for each other
n safety property: a property that says something (bad) will never 

happen
n liveness property: a property that says something (good) will 

eventually happen


