
1

Threads and Concurrency in
Java: Part 1

© 2003--09 T. S. Norvell Memorial University Threads. Slide 2

Concurrency

n What every computer engineer needs to
know about concurrency:
Concurrency is to untrained programmers

as matches are to small children.
It is all too easy to get burned.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 3

Concurrency: What

n Concurrency means that there are multiple
agents running at the same time and
interacting.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 4

Concurrency: Where

n Sources of concurrency:
q We have concurrency when we have interacting

processes running on different computers (e.g.
Apache –a web server– on mona.engr.mun.ca
and Firefox –a web browser– on
paradox.engr.mun.ca)

© 2003--09 T. S. Norvell Memorial University Threads. Slide 5

Concurrency : Where

q We also have concurrency when we have
interacting processes running on the same
computer. E.g. Firefox and Windows Explorer.
n Every interactive program is part of a concurrent system:

the user is a concurrent agent.
q Furthermore we can have multiple “threads of

control’’ within one OS process.
n A.K.A. multithreading

n Concurrency can be intermachine,
interprocess, or multithreading.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 6

Concurrency : Where

n These slides concentrate on intraprocess
concurrency in Java.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 7

Concurrency: Why

n Reasons for using concurrency
q Speed. Multiple threads can be run on multiple

processors (or multiple cores). This may give a
speed advantage.

q Distribution. We may wish different parts of a
system to be located on different machines for
reasons of convenience, security, reliability , ….

© 2003--09 T. S. Norvell Memorial University Threads. Slide 8

Concurrency: Why

n Reasons for using concurrency
q Asynchrony. It is easiest to deal with multiple

sources of events by having one thread dedicated
to each stream of incoming or outgoing events.
n For example, a web browser may use one thread to deal

with input from the user and one thread for each server
it is currently interacting with.

n Likewise a web server will typically dedicate at least one
thread to each current session.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 9

Threads

n Each thread has its own
q program counter
q registers
q local variables and stack

n All threads share the same heap (objects)

© 2003--09 T. S. Norvell Memorial University Threads. Slide 10

Concurrency: How
Multiple processors
n Multiprocessor (and

mulitcore)

tim
e

2 threads 2 processors

CPU

L1 Cache

CPU

L1 Cache

L2 Cache

Central Memory

© 2003--09 T. S. Norvell Memorial University Threads. Slide 11

tim
e

2 threads 1 processor

Concurrency: How
Time slicing implementation
n Single processor

q The CPU is switched
between threads at
unpredictable times

n Multiple processor
q Thread may occasionally

migrate

tim
e

3 threads 2 processors

© 2003--09 T. S. Norvell Memorial University Threads. Slide 12

Context switch

Stack

Copy of registers

Copy of PC

Stack

Copy of registers

Copy of PCPC

Registers

Memory

Heap

IF DEC EX WB

Instructions

Initially the red thread is executingPipeline drainsPC and registers are saved.Previously saved PC and register values are
fetched.
The green thread now executesThis is a conceptual view of the process.

Implementation details will vary.

CPU

© 2003--09 T. S. Norvell Memorial University Threads. Slide 13

Thread Objects in Java
n In Java, threads are represented by objects of class

java.lang.Thread.

n The run method contains the actual code for the thread to execute.

public class ThreadExample extends Thread {
private String message;

ThreadExample(String message) {
this.message = getName() + ": " + message;

}

@Override public void run() {
for(int i=0 ; i<20 ; ++i)

System.out.println(message);
}

}
© 2003--09 T. S. Norvell Memorial University Threads. Slide 14

Starting a new thread

n Calling t.start() starts a new thread
q which executes the t.run()

public class ThreadExampleMain {
public static void main(String[] args) {

ThreadExample thread0 = new ThreadExample("Hi");
ThreadExample thread1 = new ThreadExample("Ho");

thread0.start();
thread1.start();
System.out.println(

Thread.currentThread().getName() +
": Main is done");

}
}

© 2003--09 T. S. Norvell Memorial University Threads. Slide 15

Output for example

n Possible output for example:
Thread-1: Ho
Thread-1: Ho
Thread-0: Hi
main: Main is done
Thread-1: Ho
Thread-0: Hi
… (and so on for another 35 lines)

q When t.run() completes the thread stops.
q When all threads have stopped the program exits

© 2003--09 T. S. Norvell Memorial University Threads. Slide 16

Race Conditions

n A system has a race condition when its
correctness depends the order of certain
events, but the order of those events is not
sufficiently controlled by the design of the
system.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 17

Race Conditions

n Often race conditions occur because 2 agents have
uncontrolled access to a shared resource

n Consider two train routes that share the same bridge

n Unless access to the shared resource is controlled,
disaster may ensue.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 18

Race Conditions

n A solution:
q Before crossing the bridge, trains acquire a token
q After crossing the bridge, trains relinquish the token

Acquire the token Relinquish the token

Acquire the token Relinquish the token

Initially the token is freeBoth trains try to acquire at the same timeOnly one can succeed.As soon as the token is free again…… the other train can acquire the token

© 2003--09 T. S. Norvell Memorial University Threads. Slide 19

Race Conditions in Software

n Remember: objects are shared by threads
n In Java, access to an object’s methods is

uncontrolled, by default!!!!
n Suppose we have

public class Counter {
private int count = 0;

public void increment() {
++count;
System.out.println(count);

}
}

© 2003--09 T. S. Norvell Memorial University Threads. Slide 20

Race Conditions in Software
n Different threads can share the same Counter

public class CounterThread extends Thread {
private Counter counter;

CounterThread(Counter c) {
this.counter = c;

}

@Override public void run() {
for(int i=0 ; i<10 ; ++i) {

counter.increment();
}

}
}

© 2003--09 T. S. Norvell Memorial University Threads. Slide 21

Race Conditions in Software
n Execute the following:

public class CounterMain {
public static void main(String[] args) {

Counter c = new Counter();

// Threads p and q share the same counter
CounterThread p = new CounterThread(c);
CounterThread q = new CounterThread(c);

p.start();
q.start();

}
}

© 2003--09 T. S. Norvell Memorial University Threads. Slide 22

Race Conditions in Software

public class CounterMain {
public static void main(String[] args) {

Counter c = new Counter();
CounterThread p = new CounterThread(c);
CounterThread q = new CounterThread(c);

p.start();
q.start();

}
}

Possible Result:
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
19
20
11 WTF?

© 2003--09 T. S. Norvell Memorial University Threads. Slide 23

Race Conditions in Software
n The reason is that the increment operation

results in multiple bytecode (low-level JVM)
instructions that can get interleaved

n Focus only on ++count

public class Counter {
private int count = 0;

public void increment() {
++count;
System.out.println(count);

}
}

© 2003--09 T. S. Norvell Memorial University Threads. Slide 24

Race Conditions in Software

n The statement ++count results in the
following bytecode

n r0 represents register 0

load count to r0
r0 ß r0 + 1
store r0 to count

© 2003--09 T. S. Norvell Memorial University Threads. Slide 25

Race Conditions in Software
n Two threads invoke increment at about the same time

q (Recall: Registers are local to the thread.)
n A “race condition” results.

p q count r0 (in p) r0 (in q)
load count to r0

r0 ß r0 + 1
store r0 to count

load count to r0

r0 ß r0 + 1

store r0 to count

41

42

41
41

42
42

42

41+1+1 = 42? Of the two increments, one was lost.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 26

Race Conditions: Another Example
n Consider transfers on an account

class AccountManager {
private Account savings ;
private Account chequing;

public void transferToSavings(int amount) {
int s = savings.getBalance() ;
int c = checking.getBalance() ;
savings.setBal(s+amount) ;
chequing.setBal(c-amount) ; } … }

n Two threads execute transfers.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 27

Race Conditions : Another Example
One Thread
(amount = 500)

Another Thread
(amount = 1000)

sav chq

3000

I started with $6000 and ended with $5000. This is not good.

s = savings.getBalance()

c = chequing.getBalance()

savings.setBal(s+500)

chequing.setBal(c-500)

s = savings.getBalance()

c = chequing.getBalance()

chequing.setBal(c-1000)

savings.setBal(s+1000)

30003000 30003000

1500

4000

2000

3500

2000

3500

1500

4000

2000

© 2003--09 T. S. Norvell Memorial University Threads. Slide 28

synchronized to the rescue

n Methods may be declared synchronized

public class Counter {
private int count = 0;

public synchronized void increment() {
++count;
System.out.println(count);

}
}

© 2003--09 T. S. Norvell Memorial University Threads. Slide 29

synchronized to the rescue

n Each object has an associated token called its lock.
n At each point in time, each lock either is owned by no

thread or is owned by one thread.
n A thread that attempts to acquire a lock must wait until

no thread owns the lock.
n After acquiring a lock, a thread owns it until it

relinquishes it.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 30

synchronized to the rescue

n When a thread invokes a synchronized method x.m():
q If it does not already own the recipient’s (x’s) lock,

n It waits until it can acquire the lock
q Once the lock has been acquired the thread begins to

execute the method
n When a thread leaves an invocation of a synchronized

method:
q If it is leaving the last synchonronized invocation for that object

n It relinquishes the lock as it leaves

© 2003--09 T. S. Norvell Memorial University Threads. Slide 31

synchronized to the rescue

n Hence, for any object x, at most one thread
may be executing any of x’s synchronized
methods.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 32

synchronized to the rescue

Example: Two threads invoke c.increment() at
about the same time.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 33

synchronized to the rescue
Thread p Thread q

request lock on object c
acquire lock on object c
load count to r0

r0 ß r0 + 1
store r0 to count
relinquish lock on object o

request lock on object o
waits
waits
waits
waits
acquire lock on object o
load count to r0
r0 ß r0 + 1
store r0 to count
relinquish lock on object o

The “Room metaphor”

© 2003--09 T. S. Norvell Memorial University Threads. Slide 34

Each
object is
a room

At all
times, at
most one
thread is
allowed
to be in
the room.

When a thread not
in the room calls a
synchronized
method, it enters
an antechamber.

There it waits until
the room is
empty.

When the room is
empty, at most
one thread is
allowed to enter
the room

The room

The antechamber

T1T2

When a thread
has left all
synchronized
methods of the
object, it
leaves the
room …

… allowing
another thread
to enter.

© 2003--09 T. S. Norvell Memorial University Threads. Slide 35

Design rule: Shared Objects

n For any object that might be used by more
than one thread at the same time
q Declare all methods that access or mutate the

data synchronized
n (Note: private methods are exempted from this rule, as

they can only be called once a nonprivate method has
been called.)

Constructors need not (and can not) be synchronized

© 2003--09 T. S. Norvell Memorial University Threads. Slide 36

Accounts

n In AccountManager add synchronized to all
methods

class AccountManager {
private Account savings ;
private Account chequing;

public synchronized void transferToSavings(
int amount) {

int s = savings.getBalance() ;
int c = checking.getBalance() ;
savings.setBal(s+amount) ;
chequing.setBal(c-amount) ; } … }

