
The Need for Design Principles Refactoring Design Principles References

Design Principles: Part 1
ENGI 5895: Software Design

Andrew Vardy

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

January 24, 2018

The Need for Design Principles Refactoring Design Principles References

Outline

1 The Need for Design Principles

2 Refactoring

3 Design Principles
The Single-Responsibility Principle (SRP)
The Open-Closed Principle (OCP)

The Need for Design Principles Refactoring Design Principles References

Symptoms of Poor Design

The following are the symptoms of bad software designs, as defined
in Ch. 7 of [Martin, 2003]:

Rigidity: The design is hard to change
Fragility: The design is easy to break
Immobility: The design is hard to reuse
Viscosity: It is hard to do the right thing (i.e. forced into
hacks)
Needless Complexity: Overdesign
Needless Repetition: Mouse abuse
Needless Repetition: (Just kidding)
Opacity: Disorganized expression

Also known as design smells.

The Need for Design Principles Refactoring Design Principles References

Software Rots

When the requirements change, the system must change—often in
ways not anticipated by the initial design. Over time the software
begins to acquire design smells... The software rots!

The design should be kept as clean, simple, and as expressive
as possible

Never say, ”we’ll fix that later”
...because you won’t!

When a requirement changes, the design should be updated to
be resilient to that kind of change in the future

The Need for Design Principles Refactoring Design Principles References

Refactoring

How do we modify our designs and our code to prevent rot.
Refactoring...

Refactoring ”...the process of changing a software system in such a
way that it does not alter the external behaviour of the code yet
improves its internal structure” [Fowler, 1999]

You can refactor code:

e.g. Read ch. 5 of [Martin, 2003]

You can refactor your design:

We will see many examples

The Need for Design Principles Refactoring Design Principles References

The Single-Responsibility Principle (SRP)

A class should have only one responsibility.

OR
A class should have only one reason to change.

A class with several responsibilities creates unnecessary couplings
between those responsibilities.

e.g. Rectangle Class

The Geometry Application is concerned with the mathematics
of geometric shapes
The Graphical Application may also involve some geometry,
but it also needs to draw geometric shapes
The Rectangle class has two responsibilities:

Provide a mathematical model of a rectangle
Render a rectangle

[Figure repeated]

Problems created:

Inclusion: The GUI must be included in the Geometry
Application (C++: linked into executable, Java: GUI.class file
included in JAR file)
A change required for one application may affect the other
(e.g. adding a colour attribute)

Solution:
Separate the two responsibilities (math rep. + drawing) into
two separate classes

e.g. Modem Interface

interface Modem {
void dial (String pno) ;
void hangup () ;
void send (char c) ;
char recv () ;

}

Multiple responsibilities? You could say there are two:

Connection management (dial, hangup)
Data transfer (send, recv)

If connection management and data transfer are considered
separate responsibilities then we can provide the following solution:

However, what if connection management and data transfer always
change together? Then Modem has only one reason for change and
can be left as is. To modify Modem in this case would smell of
needless complexity.

[Figure repeated]

Consider our solution again. Modem Implementation has two
responsibilities! Isn’t this bad? Yes but...

This may be unavoidable due to h/w or OS constraints
Even if Modem Implementation changes, other classes in the
system should remain unaffected

The Need for Design Principles Refactoring Design Principles References

The Open-Closed Principle (OCP)

Software entities (classes, modules, functions, etc.)
should be open for extension, but closed for modification.

OR
To change behaviour, add new code rather than changing
existing code.

How? Abstraction.

e.g. Client Server
With regards to the Client, the following design does not conform
to the OCP.

If we want the Client to use a different Server, we must change the
Client. However, the following design resolves this problem:

The DrawShape function violates the OCP:
class Shape {

enum ShapeType {SQUARE , CIRCLE} itsType ;
Shape (ShapeType t) : itsType (t) {}

} ;

class Circle : public Shape {
Circle () : Shape (CIRCLE) {} ;
void Draw () ;
// . . .

} ;

class Square : public Shape {
Square () : Shape (SQUARE) {} ;
void Draw () ;
// . . .

} ;

void DrawShape (const Shape& s) {
if (s . itsType == Shape : : SQUARE)

static_cast<const Square&>(s) . Draw () ;
else if (s . itsType == Shape : : CIRCLE)

static_cast<const Circle&>(s) . Draw () ;
}

New derivatives of Shape require changes to DrawShape.

The use of virtual methods solves this problem:

class Shape {
public :

virtual void Draw () const = 0 ;
} ;

class Square : public Shape {
public :

virtual void Draw () const ;
// . . .

} ;

class Circle : public Shape {
public :

virtual void Draw () const ;
// . . .

} ;

void DrawShape (const Shape& s) {
s . Draw () ;

}

The Need for Design Principles Refactoring Design Principles References

References

Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

Robert C. Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall, 2003.

