
Adapter Observer Decorator Command

Design Patterns: Part 2
ENGI 5895: Software Design

Andrew Vardy
with code samples from Dr. Rodrigue Byrne and [Martin(2003)]

Faculty of Engineering & Applied Science

Memorial University of Newfoundland

February 5, 2018

Adapter Observer Decorator Command

Outline

1 Adapter

2 Observer

3 Decorator

4 Command

Adapter Observer Decorator Command

Adapter

Adapter converts the interface of a class into another form. For
example, a Switch is used to control a Light. To adhere to the DIP
and OCP we introduce a Switchable interface for various devices
that can be switched on and off:

However, perhaps Light is provided by a third party and has only a
toggle method. We need a class to translate between calls to
turnOn and turnOff and calls to toggle.

Adapter Observer Decorator Command

Adapter

Adapter converts the interface of a class into another form. For
example, a Switch is used to control a Light. To adhere to the DIP
and OCP we introduce a Switchable interface for various devices
that can be switched on and off:

However, perhaps Light is provided by a third party and has only a
toggle method. We need a class to translate between calls to
turnOn and turnOff and calls to toggle.

Adapter Observer Decorator Command

Adapter

Adapter converts the interface of a class into another form. For
example, a Switch is used to control a Light. To adhere to the DIP
and OCP we introduce a Switchable interface for various devices
that can be switched on and off:

However, perhaps Light is provided by a third party and has only a
toggle method. We need a class to translate between calls to
turnOn and turnOff and calls to toggle.

Adapter Observer Decorator Command

Notice the stereotype <‌<delegates>‌>. The responsibility of
actually controlling the Light is delegated to Light. If you delegate
a job, it means you are not doing it yourself.
In this example, LightAdapter has an associated Light. This is the
object form of adapter. There is also a class form...

Adapter Observer Decorator Command

Notice the stereotype <‌<delegates>‌>. The responsibility of
actually controlling the Light is delegated to Light. If you delegate
a job, it means you are not doing it yourself.

In this example, LightAdapter has an associated Light. This is the
object form of adapter. There is also a class form...

Adapter Observer Decorator Command

Notice the stereotype <‌<delegates>‌>. The responsibility of
actually controlling the Light is delegated to Light. If you delegate
a job, it means you are not doing it yourself.
In this example, LightAdapter has an associated Light. This is the
object form of adapter. There is also a class form...

Adapter Observer Decorator Command

This is the class form of adapter. The only difference is whether
the Adapter class inherits from Light or ”has a” Light.

Inheritance is slightly easier since LightAdapter will not need a
pointer to Light. However, inheritance forever binds LightAdapter
to Light. It may be the case that we can re-use LightAdapter in
another situation. In this case, we would prefer association over
inheritance.

Adapter Observer Decorator Command

This is the class form of adapter. The only difference is whether
the Adapter class inherits from Light or ”has a” Light.

Inheritance is slightly easier since LightAdapter will not need a
pointer to Light. However, inheritance forever binds LightAdapter
to Light. It may be the case that we can re-use LightAdapter in
another situation. In this case, we would prefer association over
inheritance.

Adapter Observer Decorator Command

This is the class form of adapter. The only difference is whether
the Adapter class inherits from Light or ”has a” Light.

Inheritance is slightly easier since LightAdapter will not need a
pointer to Light. However, inheritance forever binds LightAdapter
to Light. It may be the case that we can re-use LightAdapter in
another situation. In this case, we would prefer association over
inheritance.

Adapter Observer Decorator Command

Observer

We may have one or more objects that need to update whenever
some activity occurs in a subject object. The idea is for these
observing or listening objects to subscribe to the subject. The
subject will then automatically notify the observer objects to let
them know that something has changed.

Classes which are the subject of observation should extend Subject.
Observers should implement Observer!

Adapter Observer Decorator Command

Observer

We may have one or more objects that need to update whenever
some activity occurs in a subject object. The idea is for these
observing or listening objects to subscribe to the subject. The
subject will then automatically notify the observer objects to let
them know that something has changed.

Classes which are the subject of observation should extend Subject.
Observers should implement Observer!

Adapter Observer Decorator Command

Observer

We may have one or more objects that need to update whenever
some activity occurs in a subject object. The idea is for these
observing or listening objects to subscribe to the subject. The
subject will then automatically notify the observer objects to let
them know that something has changed.

Classes which are the subject of observation should extend Subject.
Observers should implement Observer!

Adapter Observer Decorator Command

[Figure repeated]

A class such as Subject should either be abstract (some
implementation allowed) or a pure interface (no implementation).
It is often convenient for Subject to be abstract and provide
implementations for methods such as Attach and Notify.

The designers of Java were so taken with Observer that they
provided classes called java.util.Observable (i.e. Subject) and
java.util.Observer. They also use Observer for Java’s GUI event
processing model (as we will see).

Adapter Observer Decorator Command

[Figure repeated]

A class such as Subject should either be abstract (some
implementation allowed) or a pure interface (no implementation).
It is often convenient for Subject to be abstract and provide
implementations for methods such as Attach and Notify.

The designers of Java were so taken with Observer that they
provided classes called java.util.Observable (i.e. Subject) and
java.util.Observer. They also use Observer for Java’s GUI event
processing model (as we will see).

Adapter Observer Decorator Command

[Figure repeated]

A class such as Subject should either be abstract (some
implementation allowed) or a pure interface (no implementation).
It is often convenient for Subject to be abstract and provide
implementations for methods such as Attach and Notify.

The designers of Java were so taken with Observer that they
provided classes called java.util.Observable (i.e. Subject) and
java.util.Observer. They also use Observer for Java’s GUI event
processing model (as we will see).

Adapter Observer Decorator Command

e.g. Temperature Observer

Adapter Observer Decorator Command

import java . util . Observable ;

class TemperatureSensor extends Observable {

private double currentTemp ;

public double getTemp () {

return currentTemp ;

}

public void setTemp (double currentTemp) {

if (this . currentTemp != currentTemp) {

this . currentTemp = currentTemp ;

setChanged () ; // setChanged i s p r o t e c t e d

notifyObservers () ;

}

}

}

Adapter Observer Decorator Command

import java . util . Observer ;

import java . util . Observable ;

class NotifyWorld implements Observer {

public void update (Observable obs , Object obj) {

TemperatureSensor sens = (TemperatureSensor) obs ;

System . out . printf ("World new temp i s %g%n" ,

sens . getTemp ()) ;

}

}

import java . util . Observable ;

import java . util . Observer ;

class UpdateDisplay implements Observer {

public void update (Observable obs , Object obj) {

TemperatureSensor sens = (TemperatureSensor) obs ;

System . out . printf (" d i s p l a y : %g%n" ,

sens . getTemp ()) ;

}

}

Adapter Observer Decorator Command

import java . util . Observer ;

import java . util . Observable ;

class NotifyWorld implements Observer {

public void update (Observable obs , Object obj) {

TemperatureSensor sens = (TemperatureSensor) obs ;

System . out . printf ("World new temp i s %g%n" ,

sens . getTemp ()) ;

}

}

import java . util . Observable ;

import java . util . Observer ;

class UpdateDisplay implements Observer {

public void update (Observable obs , Object obj) {

TemperatureSensor sens = (TemperatureSensor) obs ;

System . out . printf (" d i s p l a y : %g%n" ,

sens . getTemp ()) ;

}

}

Adapter Observer Decorator Command

public class ObserverDemo {

public static void main (String [] args) {

TemperatureSensor ts = new TemperatureSensor () ;

ts . addObserver (new NotifyWorld ()) ;

ts . addObserver (new UpdateDisplay ()) ;

ts . setTemp (16 .0) ;

}

}

Adapter Observer Decorator Command

Decorator

The Decorator pattern is used to add new behaviours to an object,
without inheritance. Inheritance is used for adding new behaviours
but must be specified at compile-time. Decorator allows new
behaviours to be added at run-time!

e.g. In the Java API the basic class for reading character streams is
Reader. Reader is abstract but has the following concrete
subclasses:

FileReader: Used to read characters from a file
BufferedReader: Allows text to be read from a character-input
stream in manageable chunks (e.g. lines)
LineNumberReader: Keeps track of line numbers

The constructors for BufferedReader and LineNumberReader
require a Reader. We build a Reader with the required set of
behaviour by instantiating a chain of objects—with each one being
decorated by the next.

Adapter Observer Decorator Command

Decorator

The Decorator pattern is used to add new behaviours to an object,
without inheritance. Inheritance is used for adding new behaviours
but must be specified at compile-time. Decorator allows new
behaviours to be added at run-time!

e.g. In the Java API the basic class for reading character streams is
Reader. Reader is abstract but has the following concrete
subclasses:

FileReader: Used to read characters from a file
BufferedReader: Allows text to be read from a character-input
stream in manageable chunks (e.g. lines)
LineNumberReader: Keeps track of line numbers

The constructors for BufferedReader and LineNumberReader
require a Reader. We build a Reader with the required set of
behaviour by instantiating a chain of objects—with each one being
decorated by the next.

Adapter Observer Decorator Command

Decorator

The Decorator pattern is used to add new behaviours to an object,
without inheritance. Inheritance is used for adding new behaviours
but must be specified at compile-time. Decorator allows new
behaviours to be added at run-time!

e.g. In the Java API the basic class for reading character streams is
Reader. Reader is abstract but has the following concrete
subclasses:

FileReader: Used to read characters from a file

BufferedReader: Allows text to be read from a character-input
stream in manageable chunks (e.g. lines)
LineNumberReader: Keeps track of line numbers

The constructors for BufferedReader and LineNumberReader
require a Reader. We build a Reader with the required set of
behaviour by instantiating a chain of objects—with each one being
decorated by the next.

Adapter Observer Decorator Command

Decorator

The Decorator pattern is used to add new behaviours to an object,
without inheritance. Inheritance is used for adding new behaviours
but must be specified at compile-time. Decorator allows new
behaviours to be added at run-time!

e.g. In the Java API the basic class for reading character streams is
Reader. Reader is abstract but has the following concrete
subclasses:

FileReader: Used to read characters from a file
BufferedReader: Allows text to be read from a character-input
stream in manageable chunks (e.g. lines)

LineNumberReader: Keeps track of line numbers

The constructors for BufferedReader and LineNumberReader
require a Reader. We build a Reader with the required set of
behaviour by instantiating a chain of objects—with each one being
decorated by the next.

Adapter Observer Decorator Command

Decorator

The Decorator pattern is used to add new behaviours to an object,
without inheritance. Inheritance is used for adding new behaviours
but must be specified at compile-time. Decorator allows new
behaviours to be added at run-time!

e.g. In the Java API the basic class for reading character streams is
Reader. Reader is abstract but has the following concrete
subclasses:

FileReader: Used to read characters from a file
BufferedReader: Allows text to be read from a character-input
stream in manageable chunks (e.g. lines)
LineNumberReader: Keeps track of line numbers

The constructors for BufferedReader and LineNumberReader
require a Reader. We build a Reader with the required set of
behaviour by instantiating a chain of objects—with each one being
decorated by the next.

Adapter Observer Decorator Command

Decorator

The Decorator pattern is used to add new behaviours to an object,
without inheritance. Inheritance is used for adding new behaviours
but must be specified at compile-time. Decorator allows new
behaviours to be added at run-time!

e.g. In the Java API the basic class for reading character streams is
Reader. Reader is abstract but has the following concrete
subclasses:

FileReader: Used to read characters from a file
BufferedReader: Allows text to be read from a character-input
stream in manageable chunks (e.g. lines)
LineNumberReader: Keeps track of line numbers

The constructors for BufferedReader and LineNumberReader
require a Reader. We build a Reader with the required set of
behaviour by instantiating a chain of objects—with each one being
decorated by the next.

Adapter Observer Decorator Command

Decorator

The Decorator pattern is used to add new behaviours to an object,
without inheritance. Inheritance is used for adding new behaviours
but must be specified at compile-time. Decorator allows new
behaviours to be added at run-time!

e.g. In the Java API the basic class for reading character streams is
Reader. Reader is abstract but has the following concrete
subclasses:

FileReader: Used to read characters from a file
BufferedReader: Allows text to be read from a character-input
stream in manageable chunks (e.g. lines)
LineNumberReader: Keeps track of line numbers

The constructors for BufferedReader and LineNumberReader
require a Reader. We build a Reader with the required set of
behaviour by instantiating a chain of objects—with each one being
decorated by the next.

import java . io . IOException ;

import java . io . BufferedReader ;

import java . io . FileReader ;

import java . io . LineNumberReader ;

public class BufferLineCountReader {

public static void main (String [] args) throws IOException {

if (args . length != 1) {

System . out . println (

" usage : j a v a Bu f f e rL i neCountReade r f i l e ") ;

System . exit (1) ;

}

FileReader fr = new FileReader (args [0]) ;

BufferedReader br = new BufferedReader (fr) ;

LineNumberReader lnr = new LineNumberReader (br) ;

String line = null ;

while ((line=lnr . readLine ()) != null) {

System . out . printf ("%5d : %s%n" ,

lnr . getLineNumber () , line) ;

}

lnr . close () ;

}

}

Here is the general structure of Decorator from
[Gamma et al.(1995)Gamma, Helm, Johnson, and Vlissides]:

Component: Defines the interface for objects that can be
decorated with new behaviours (e.g. Reader)
ConcreteComponent: A basic object that can be decorated
(but is not a Decorator) (e.g. FileReader)
Decorator: Decorates some Component (already decorated or
a ConcreteComponent) with new behaviour (e.g.
BufferedReader, LineNumberReader)

Here is the general structure of Decorator from
[Gamma et al.(1995)Gamma, Helm, Johnson, and Vlissides]:

Component: Defines the interface for objects that can be
decorated with new behaviours (e.g. Reader)

ConcreteComponent: A basic object that can be decorated
(but is not a Decorator) (e.g. FileReader)
Decorator: Decorates some Component (already decorated or
a ConcreteComponent) with new behaviour (e.g.
BufferedReader, LineNumberReader)

Here is the general structure of Decorator from
[Gamma et al.(1995)Gamma, Helm, Johnson, and Vlissides]:

Component: Defines the interface for objects that can be
decorated with new behaviours (e.g. Reader)
ConcreteComponent: A basic object that can be decorated
(but is not a Decorator) (e.g. FileReader)

Decorator: Decorates some Component (already decorated or
a ConcreteComponent) with new behaviour (e.g.
BufferedReader, LineNumberReader)

Here is the general structure of Decorator from
[Gamma et al.(1995)Gamma, Helm, Johnson, and Vlissides]:

Component: Defines the interface for objects that can be
decorated with new behaviours (e.g. Reader)
ConcreteComponent: A basic object that can be decorated
(but is not a Decorator) (e.g. FileReader)
Decorator: Decorates some Component (already decorated or
a ConcreteComponent) with new behaviour (e.g.
BufferedReader, LineNumberReader)

Adapter Observer Decorator Command

e.g. Coffee

The coffee example from Wikipedia provides a nice introduction to
the implementation of Decorator:
http://en.wikipedia.org/wiki/Decorator_pattern

Here is the class diagram for this example:

http://en.wikipedia.org/wiki/Decorator_pattern

Adapter Observer Decorator Command

e.g. Coffee

The coffee example from Wikipedia provides a nice introduction to
the implementation of Decorator:
http://en.wikipedia.org/wiki/Decorator_pattern

Here is the class diagram for this example:

http://en.wikipedia.org/wiki/Decorator_pattern

Adapter Observer Decorator Command

Command

The Command pattern treats requests as objects. Instead of a
direct function call, we create an object that provides an execute
method and stores the parameters of the function call. Instead of
simply calling a method of object receiver:

receiver . doStuff (1 2) ;

we create a class to represent such a request. In general, a
Command is something with an execute method.
interface Command {

void execute () ;

}

We need a Command specifically for receiver.doStuff(int)...

Adapter Observer Decorator Command

Command

The Command pattern treats requests as objects. Instead of a
direct function call, we create an object that provides an execute
method and stores the parameters of the function call. Instead of
simply calling a method of object receiver:

receiver . doStuff (1 2) ;

we create a class to represent such a request. In general, a
Command is something with an execute method.
interface Command {

void execute () ;

}

We need a Command specifically for receiver.doStuff(int)...

Adapter Observer Decorator Command

Command

The Command pattern treats requests as objects. Instead of a
direct function call, we create an object that provides an execute
method and stores the parameters of the function call. Instead of
simply calling a method of object receiver:

receiver . doStuff (1 2) ;

we create a class to represent such a request. In general, a
Command is something with an execute method.

interface Command {

void execute () ;

}

We need a Command specifically for receiver.doStuff(int)...

Adapter Observer Decorator Command

Command

The Command pattern treats requests as objects. Instead of a
direct function call, we create an object that provides an execute
method and stores the parameters of the function call. Instead of
simply calling a method of object receiver:

receiver . doStuff (1 2) ;

we create a class to represent such a request. In general, a
Command is something with an execute method.
interface Command {

void execute () ;

}

We need a Command specifically for receiver.doStuff(int)...

Adapter Observer Decorator Command

Command

The Command pattern treats requests as objects. Instead of a
direct function call, we create an object that provides an execute
method and stores the parameters of the function call. Instead of
simply calling a method of object receiver:

receiver . doStuff (1 2) ;

we create a class to represent such a request. In general, a
Command is something with an execute method.
interface Command {

void execute () ;

}

We need a Command specifically for receiver.doStuff(int)...

public class DoStuffCommand implements Command {

Receiver receiver ;

int value ;

public DoStuffCommand (Receiver receiver , int value) {

this . receiver = receiver ;

this . value = value ;

}

public void execute () {

receiver . doStuff (value) ;

}

}

Now lets see how this is used:
import java . util . ArrayList ;

public class TestCommand {

public static void main (String [] args) {

Receiver receiver = new Receiver () ;

ArrayList<Command> commands =

new ArrayList<Command >();

//

commands . add (new DoStuffCommand (receiver , 12)) ;

//

// . . . o t h e r commands added . . . t ime pa s s e s . . .

//

for (Command cmd : commands)

cmd . execute () ;

}

}

public class DoStuffCommand implements Command {

Receiver receiver ;

int value ;

public DoStuffCommand (Receiver receiver , int value) {

this . receiver = receiver ;

this . value = value ;

}

public void execute () {

receiver . doStuff (value) ;

}

}

Now lets see how this is used:
import java . util . ArrayList ;

public class TestCommand {

public static void main (String [] args) {

Receiver receiver = new Receiver () ;

ArrayList<Command> commands =

new ArrayList<Command >();

//

commands . add (new DoStuffCommand (receiver , 12)) ;

//

// . . . o t h e r commands added . . . t ime pa s s e s . . .

//

for (Command cmd : commands)

cmd . execute () ;

}

}

public class DoStuffCommand implements Command {

Receiver receiver ;

int value ;

public DoStuffCommand (Receiver receiver , int value) {

this . receiver = receiver ;

this . value = value ;

}

public void execute () {

receiver . doStuff (value) ;

}

}

Now lets see how this is used:

import java . util . ArrayList ;

public class TestCommand {

public static void main (String [] args) {

Receiver receiver = new Receiver () ;

ArrayList<Command> commands =

new ArrayList<Command >();

//

commands . add (new DoStuffCommand (receiver , 12)) ;

//

// . . . o t h e r commands added . . . t ime pa s s e s . . .

//

for (Command cmd : commands)

cmd . execute () ;

}

}

public class DoStuffCommand implements Command {

Receiver receiver ;

int value ;

public DoStuffCommand (Receiver receiver , int value) {

this . receiver = receiver ;

this . value = value ;

}

public void execute () {

receiver . doStuff (value) ;

}

}

Now lets see how this is used:
import java . util . ArrayList ;

public class TestCommand {

public static void main (String [] args) {

Receiver receiver = new Receiver () ;

ArrayList<Command> commands =

new ArrayList<Command >();

//

commands . add (new DoStuffCommand (receiver , 12)) ;

//

// . . . o t h e r commands added . . . t ime pa s s e s . . .

//

for (Command cmd : commands)

cmd . execute () ;

}

}

public class DoStuffCommand implements Command {

Receiver receiver ;

int value ;

public DoStuffCommand (Receiver receiver , int value) {

this . receiver = receiver ;

this . value = value ;

}

public void execute () {

receiver . doStuff (value) ;

}

}

Now lets see how this is used:
import java . util . ArrayList ;

public class TestCommand {

public static void main (String [] args) {

Receiver receiver = new Receiver () ;

ArrayList<Command> commands =

new ArrayList<Command >();

//

commands . add (new DoStuffCommand (receiver , 12)) ;

//

// . . . o t h e r commands added . . . t ime pa s s e s . . .

//

for (Command cmd : commands)

cmd . execute () ;

}

}

public class DoStuffCommand implements Command {

Receiver receiver ;

int value ;

public DoStuffCommand (Receiver receiver , int value) {

this . receiver = receiver ;

this . value = value ;

}

public void execute () {

receiver . doStuff (value) ;

}

}

Now lets see how this is used:
import java . util . ArrayList ;

public class TestCommand {

public static void main (String [] args) {

Receiver receiver = new Receiver () ;

ArrayList<Command> commands =

new ArrayList<Command >();

//

commands . add (new DoStuffCommand (receiver , 12)) ;

//

// . . . o t h e r commands added . . . t ime pa s s e s . . .

//

for (Command cmd : commands)

cmd . execute () ;

}

}

public class DoStuffCommand implements Command {

Receiver receiver ;

int value ;

public DoStuffCommand (Receiver receiver , int value) {

this . receiver = receiver ;

this . value = value ;

}

public void execute () {

receiver . doStuff (value) ;

}

}

Now lets see how this is used:
import java . util . ArrayList ;

public class TestCommand {

public static void main (String [] args) {

Receiver receiver = new Receiver () ;

ArrayList<Command> commands =

new ArrayList<Command >();

//

commands . add (new DoStuffCommand (receiver , 12)) ;

//

// . . . o t h e r commands added . . . t ime pa s s e s . . .

//

for (Command cmd : commands)

cmd . execute () ;

}

}

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution
Provide logging by modifying execute or adding a log method
Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes
Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution

Provide logging by modifying execute or adding a log method
Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes
Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution
Provide logging by modifying execute or adding a log method

Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes
Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution
Provide logging by modifying execute or adding a log method
Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes

Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution
Provide logging by modifying execute or adding a log method
Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes
Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution
Provide logging by modifying execute or adding a log method
Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes
Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution
Provide logging by modifying execute or adding a log method
Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes
Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

This seems like a very indirect way of calling
receiver.doStuff(12). But this indirection buys us something.
Here are some applications:

Queue up Commands for later execution
Provide logging by modifying execute or adding a log method
Support transactions (e.g. bank account transactions) such
that new transactions are created not by modifying existing
code, but by create new concrete Command classes
Support unlimited undo / redo:

Incorporate an undo method into Command to reverse the

effects of execute

Requires some storage of the previous state of the receiver by

execute

Executed commands are maintained in a history list that is

traversed backwards for undo operations (by calling undo) and

forwards for redo operations (by calling execute)

The following is the overall structure for Command
[Gamma et al.(1995)Gamma, Helm, Johnson, and Vlissides]:

Sequence diagram:

The following is the overall structure for Command
[Gamma et al.(1995)Gamma, Helm, Johnson, and Vlissides]:

Sequence diagram:

Adapter Observer Decorator Command

References

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software.
Addison-Wesley Professional, 1995.

Robert C. Martin.
Agile Software Development: Principles, Patterns, and
Practices.
Prentice Hall, 2003.

	Adapter
	Observer
	Decorator
	Command

