
What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Design Patterns: Part 1
ENGI 5895: Software Design

Andrew Vardy
with code samples from Dr. Rodrigue Byrne and [2]

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

February 1, 2017

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Outline

1 What is a Design Pattern?

2 Iterator

3 Strategy

4 Factory

5 Singleton

6 Facade

7 Composite

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

What is a Design Pattern?

A design pattern is a general solution to a commonly encountered
problem in object-oriented design.
Here’s an analogy to bend your brain...

The Pattern of Myths: ”Hero with a thousand faces” In his 1948
book, ”Hero with a thousand faces” Joseph Campbell discusses how
myths from various cultures share a common structure: the
monomyth:

”A hero ventures forth from the world of common day
into a region of supernatural wonder: fabulous forces are
there encountered and a decisive victory is won: the hero
comes back from this mysterious adventure with the
power to bestow boons on his fellow man.”

Important roles are filled by archetypes: characters that adhere to
particular patterns:

The Hero (e.g. Frodo, Luke Skywalker)
Shadows (e.g. Sauron, Darth Vader)
Mentors (e.g. Gandalf, Yoda)
etc...

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

A design pattern is like the monomyth. It consists of a set of
classes with particular interactions. These classes fill certain
roles (archetypes).
Popularized by the following book from the ”Gang of Four”:

Design Patterns, Elements of Reusable Object-Oriented
Software, by Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, Addison-Wesley Professional, 1995

You have probably employed some design patterns already,
without even knowing it.
Recognizing your existing use of a pattern helps to document
it and adds clarity to your design.
Introducing patterns into your design will help to alleviate
design smells and adhere to the design principles.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Iterator

Intent: Provide a way to access the elements of an aggergate
object [e.g. a list] sequentially without exposing its underlying
representation.
You already know this pattern (from 4892)! Consider the code for a
list of int’s that automatically resizes...

public class IntVect {
private int sz ;
private int [] vect ;

//
public IntVect (int capacity) {

this . vect = new int [capacity] ;
this . sz = 0 ;

}
//

public int size () { return sz ; }
//

public void add (int e) {
if (sz >= vect . length) {

int [] t = new int [2⇤sz] ;
for (int i = 0 ; i < vect . length ; i++) {

t [i] = vect [i] ;
}
vect = t ;

}
vect [sz] = e ;
sz++;

}
//

public int get (int index) { return vect [index] ; }

public void set (int index , int e) { vect [index] = e ; }
}

public class IntVectIter {
private IntVect intVect ;
private int next ;

//
public IntVectIter (IntVect intVect) {

this . intVect = intVect ;
this . next = 0 ;

}
//

public boolean hasMore () {
if (next < intVect . size ()) return true ;
else return false ;

}
//

public int nextElement () {
if (next >= intVect . size ()) {

throw new RuntimeException ("no more e l ement s ") ;
}
int v = intVect . get (next) ;
next++;
return v ;

}
}

Using the Iterator

public class TestIntVect {
public static void main (String [] args) {

IntVect vec = new IntVect (5) ;
vec . add (1 0) ;
vec . add (2 0) ;
vec . add (3 0) ;
vec . add (4 0) ;
assert vec . size () == 4 ;

//
// Crea te the i t e r a t o r .
IntVectIter iterator = new IntVectIter (vec) ;

//
// I t e r a t e !
while (iterator . hasMore ()) {

int value = iterator . nextElement () ;
System . out . println (" v a l u e : " + value) ;

}
}

}

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Aside: Container Classes (i.e. Data Structures)

For general purpose containers, use classes from the Java
Collections Framework. For an automatically resizing array use
ArrayList. Better yet, use ArrayList<Type>:
import java . util . ArrayList ;
public class TestGenerics {

public static void main (String [] args) {
ArrayList<Integer> vec = new ArrayList<Integer >();
vec . add (1 0) ;
vec . add (2 0) ;
// Compile�t ime e r r o r !
vec . add (new String (" a s d f ")) ;

}
}

If you don’t use the Generics feature (i.e. ArrayList instead of
ArrayList<Type>) then you lose the compile-time type check for
what goes in the ArrayList.

Different data structures will require different Iterator
implementations. Therefore, we can apply the DIP and abstract out
the type of iterator required.

Notice here that the type of List data structure is also made
abstract. The Factory pattern is used here in
CreateIterator (we will cover this pattern soon)
This figure is from [1] which came out prior to UML.
Therefore, the notation is slightly different.

Here is the general structure of Iterator from [1]:

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Strategy

This is another pattern you’ve already seen. Recall in assignment 1
that the AI interface was implemented by two different concrete
strategies:

The idea of the Strategy pattern is to define a set of
interchangeable algorithms. The algorithms can change but those
changes are insulated from the client code.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Here is the general structure of Strategy:

Participants:
Strategy: Declares common interface for this familty of
algorithms
ConcreteStrategyX: Implements one algorithm
Context: Creates a ConcreteStrategyX but only refers to it as
a Strategy (see next slide)

UML Diagrams Lie!

The UML diagram previously shown for the AI interface suggests
that Game knows nothing about SmartAI or DumbAI. Yet here is a
segment of the code for Game:
public class Game {

private AI ai ; // . . .

public Game (boolean playerIsX , boolean challenging) {
// . . .

if (challenging)
ai = new SmartAI (! playerIsX) ;

else
ai = new DumbAI (! playerIsX) ;

}

public void aiPlacePiece () {
// . . .

board = new Board (board , ai . chooseMove (board)) ;
}

}

Game creates either a SmartAI or a DumbAI. So Game actually
does have a dependency on these classes not shown in the UML!

These previously unshown dependency arrows show that the design
violates the DIP! But...

The dependency is restricted to one small section in the
constructor where either SmartAI or DumbAI is created
Afterwards, we refer to the AI functionality only through the
AI interface
So its a white lie... a small ommission of information—If we
added the depedencies above it would be more accurate, but
would also impair the clarity of the design

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

This pattern was dubbed ”Factory Method” by [1]. However,
following [2] we will just call it ”Factory”

In the example above the creation of a SmartAI or DumbAI
had to be made by Game

Can this creation logic be separated out from the client class?

Yes. The Factory pattern allows us to create concrete objects
through an abstract ”factory” interface

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

e.g. Creating Shapes

This example is very similar to the tic-tac-toe case. SomeApp will
refer to the Shapes its creates only though the Shape interface, but
at some point it has to create concrete instances of Shape.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Define a ShapeFactory interface and an underlying implementation
to do the actual creation. SomeApp now just calls makeSquare or
makeCircle.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

interface ShapeFactory {
Shape makeCircle () ;
Shape makeSquare () ;

}

public class ShapeFactoryImplementation implements ShapeFactory {
public Shape makeCircle () {

return new Circle () ;
}

public Shape makeSquare () {
return new Square () ;

}
}

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Having individual makeSquare, makeCircle in the ShapeFactory
class means that we still have a sort of dependency between
SomeApp and the concrete Shape classes. To correct this we can
refactor ShapeFactory to have only one make method:
interface ShapeFactory2 {

Shape make (String shapeName) throws Exception ;
}

public class ShapeFactoryImplementation2 implements ShapeFactory2 {
public Shape make (String shapeName) throws Exception {

if (shapeName . equals (" C i r c l e "))
return new Circle () ;

else if (shapeName . equals (" Square "))
return new Square () ;

else
throw new Exception ("Cannot c r e a t e " + shapeName) ;

}
}

Example from the Java API

import java . util . Calendar ;
import java . util . Locale ;

public class PrintDate {
public static void main (String [] args) {

// get a c a l e n d a r based on the l o c a l env i ronment
Calendar cal = Calendar . getInstance () ;

System . out . println (cal . getTime ()) ;

System . out . println (" F i r s t weekday : " +
cal . getFirstDayOfWeek ()) ;

// get a c a l e n d a r f o r the f r e n c h env i ronment
Calendar frCal = Calendar . getInstance (Locale . FRENCH) ;
System . out . println (" F i r s t weekday : " +

frCal . getFirstDayOfWeek ()) ;
}

}

In North America the first day of the week is Sunday, but in France
it is Monday.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Singleton

The Singleton class is suitable when we need exactly one object,
with global access. Examples:

An OS has only one file system
A ship has only one Captain
A program may have only one configuration file
A running Java application has only one run-time environment

The code for any Singleton will typically look like this:
public class Singleton {

private static Singleton theSingleton = null ;
//

// Ca l l e d on l y w i t h i n t h i s c l a s s !
private Singleton () {
}

//
public static Singleton getSoleInstance () {

if (theSingleton == null) {
theSingleton = new Singleton () ;

}
return theSingleton ;

}
}

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Here is the UML diagram for Singleton:

Remember that the filled diamond indicates composition. The
lifetime of the Singleton and itself are the same (D-uh!).

Example from the Java API: The Runtime class:
class RuntimeDemo {

public static void main (String [] args) {
// Get the s i n g l e t o n !
Runtime rt = Runtime . getRuntime () ;

//
System . out . printf ("No . o f p r o c e s s o r s %d\n" ,

rt . availableProcessors ()) ;
//

// run the garbage c o l l e c t o r
rt . gc () ;

//
// Add a b i t o f code to run on shutdown
rt . addShutdownHook (new Thread () {

public void run () {
System . out . println (" Shu t t i ng down") ;

}
}) ;

//
try {

while ((char) System . in . read () != ’ q ’) {
// l oop u n t i l u s e r e n t e r s ’ q ’

}
}
catch (java . io . IOException ex) {}

}
}

Now for a more useful example (Runtime should be used sparingly!).
The java.util.logging package allows logging messages to be stored
from your programs. The main class, Logger is not a true Singleton
since you can create more than one, but it is quite similar.
Logger logger = Logger . getLogger ("mylogger ") ;

The purpose is to log Strings representing the application’s state or
progress. The following levels of log messages are available:

SEVERE
WARNING
INFO
CONFIG
FINE
FINER
FINEST

import java . io . ⇤ ;
import java . util . logging . ⇤ ;

public class LoggingTest {

public static void main (String [] args) {
Logger logger = Logger . getLogger (" Logg ingTest ") ;

// Crea te a l o g f i l e to s e r v e as the l o g g e r ’ s output .
try {

// t r u e f l a g i n d i c a t e s t ha t r e c o r d s a r e appended
FileHandler handler = new FileHandler (" l o g . xml" , true) ;
logger . addHandler (handler) ;

} catch (IOException e) {
System . err . println ("Could not c r e a t e l o g f i l e " + e) ;
System . exit (1) ;

}

try {
logger . setLevel (Level . FINE) ;

} catch (SecurityException e) {
System . err . println ("Problem chang ing l o g g i n g l e v e l ! ") ;
System . exit (1) ;

}

// Try the d i f f e r e n t l o g g i n g l e v e l s
// not a l l messages w i l l be l ogged
logger . severe ("a s e v e r e msg") ;
logger . warning ("a warn ing msg") ;
logger . info ("a i n f o msg") ;
logger . config ("a c o n f i g msg") ;
logger . fine ("a f i n e msg") ;
logger . finer ("a f i n e r msg") ;
logger . finest ("a f i n e s t msg") ;

}
}

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Singleton is not without its detractors. One criticism is that it
introduces global state into an application. It is possible for two
seemingly unrelated classes to communicate through a Singleton.
Thus, some have referred to Singleton as an anti-pattern.
So use it, but try not to overuse it.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Facade

Good object-oriented designs tend to yield more and smaller classes.
Yet it may be difficult for clients to understand and use your design.
Facade provides a simple interface to a complex subsystem.

The Facade can be a Singleton if only one interface per subsystem
is needed.

e.g. java.lang.System

The System class in java.lang provides a wide-array of useful fields
and methods. Here are a few:
public class SystemExample {

public static void main (String [] args) throws Exception {
long time = System . currentTimeMillis () ;

System . out . println ("Whaddya at wor ld ! ") ;

if ((char) System . in . read () == ’ q ’) {
System . err . println ("You want to q u i t a l r e a d y ! ") ;
System . exit (0) ;

}

long elapsed = System . currentTimeMillis () � time ;
System . out . println (" e l a p s e d (s e c s) : " + elapsed / 1000) ;

}
}

System is a Facade because it provides a simplified interface to a
large and complex system.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Notice that System is not a proper Singleton. Instead it has only
static methods and fields. This may seem equivalent but Singleton
offers some advantages:

You can specify arguments to control the initialization of your
Singleton (not possible for an all-static class)
You can sub-class a Singleton

These advantages don’t apply to java.lang.System which is a rather
special class.

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

Composite

The Composite pattern allows clients to treat individual objects and
compositions of objects uniformly. Consider the following example:

You can call draw on a simple Shape such as Circle or Square, but
you can also draw a whole collection of shapes.

interface Shape {
void draw () ;

}

import java . util . ArrayList ;

public class CompositeShape implements Shape {
private ArrayList<Shape> shapes =

new ArrayList<Shape >();

public void add (Shape s) {
shapes . add (s) ;

}

public void draw () {
for (Shape s : shapes)

s . draw () ;
}

}

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

e.g. Evaluation Items in Courses

Consider a course such as this one. There are evaluation items such
as assignments, tests, and maybe a project. These items have a
mark and some weight in the grading scheme. A composition of
items (e.g. the composition of all assignments) also has a mark and
some weight. The whole course can be considered a composition
(with a weight of 100).

interface EvaluationItem {
double getWeight () ;
double getMark () ;

}

public class Item implements EvaluationItem {
private String name ;
private double earned , maximum , weight ;

//
public Item (String name , double earned ,

double maximum , double weight) {
this . name = name ;
this . earned = earned ;
this . maximum = maximum ;
this . weight = weight ;

}
//

public double getWeight () {
return weight ;

}
//

public double getMark () {
return weight ⇤ earned / maximum ;

}
}

import java . util . ArrayList ;
public class EvaluationGroup implements EvaluationItem {

private String name ;
private ArrayList<EvaluationItem> items =

new ArrayList<EvaluationItem >();
//

public EvaluationGroup (String n) { name = n ; }
//

public void add (EvaluationItem item) { items . add (item) ; }
//

public String getName () { return name ; }
//

public double getWeight () {
double totalWeight = 0 ;
for (EvaluationItem item : items)

totalWeight += item . getWeight () ;
return totalWeight ;

}
//

public double getMark () {
double finalMark = 0 ;
for (EvaluationItem item : items)

finalMark += item . getMark () ;
return finalMark ;

}
}

public class TestEvaluation {
public static void main (String [] args) {

EvaluationGroup assigns = new EvaluationGroup (" A s s i g n s ") ;
assigns . add (new Item ("A1" , 60 , 100 , 1 0)) ;
assigns . add (new Item ("A2" , 70 , 100 , 1 0)) ;
assigns . add (new Item ("A3" , 80 , 100 , 1 0)) ;
print (assigns) ;

//
EvaluationGroup tests = new EvaluationGroup (" Tes t s ") ;
tests . add (new Item ("Mid�term" , 80 , 100 , 2 0)) ;
tests . add (new Item (" F i n a l " , 80 , 100 , 5 0)) ;
print (tests) ;

//
EvaluationGroup course = new EvaluationGroup ("Course ") ;
course . add (assigns) ;
course . add (tests) ;
print (course) ;

}
private static void print (EvaluationGroup group) {

System . out . println (group . getName () + " : \ t we ight : " +
group . getWeight () + "\ t mark : " + group . getMark ()) ;

}
}

OUTPUT: Assigns: weight: 30.0 mark: 21.0
Tests: weight: 70.0 mark: 56.0
Course: weight: 100.0 mark: 77.0

What is a Design Pattern? Iterator Strategy Factory Singleton Facade Composite

References

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software.
Addison-Wesley Professional, 1995.

Robert C. Martin.
Agile Software Development: Principles, Patterns, and
Practices.
Prentice Hall, 2003.

