
A Brief Introduction to Java for C++
Programmers: Part 2

ENGI 5895: Software Design

Andrew Vardy

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

January 15, 2017

Andrew Vardy Brief Intro. to Java: Part 2

Coverage of Part 2

This second set of notes focusses on the following features of Java:
Packages
Inheritance
Abstract Classes and Methods
Interfaces

Andrew Vardy Brief Intro. to Java: Part 2

import: using packages

To use a class such as ArrayList from the Java API you have three
choices:

1 import the class using its full name:
import java.util.ArrayList;
(This statement must go at the top of your .java file, outside
the class)

2 import the whole package:
import java.util.*;

3 Utilize the full class name everywhere.

Andrew Vardy Brief Intro. to Java: Part 2

The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java’s equivalent of templates!):

import java . util . ArrayList ;
// ALT : impor t j a v a . u t i l . ⇤ ;

public class Import {
public static void main (String [] args) {

ArrayList<Integer> list =
new ArrayList<Integer >();

//
list . add (new Integer (1 0)) ; //
list . add (2 0) ; // Sho r t cu t to above form
list . add (3 0) ;

//
for (Integer i : list)

System . out . println (i) ;
}

}

Packages

A package is a set of related classes
All files belonging to the package must be placed in a
corresponding directory
e.g. files in package avardy.package1 must go in
avardy/package1 (relative to the CLASSPATH directory)
A class, member data item, or member method is either
private, public, protected, or has package access, meaning that
it is public within the package:

package mypackage ;
public class X {

private int i ;
int j ;

}

j is accessible from other classes within the package, but not i

package avardy . package1 ;
class A {

int value = 42 ;
}

package avardy . package1 ;
class B {

private int value ;
public B (A refA) {

// This i s OK because A ’ s
// v a l u e has package a c c e s s
value = refA . value ;

}
}

package avardy . package1 ;

public class Front {
public static void main (String [] args) {

A refA = new A () ;
B refB = new B (refA) ;

}
}

Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
No multiple inheritance
Singly-rooted hierarchy (all classes inherit from Object)
Syntax

C++: class Derived : public Base
Java: class Derived extends Base

Utilize super keyword to call the base class constructor or
base class methods

Andrew Vardy Brief Intro. to Java: Part 2

class Animal {
protected int legs ;

public Animal (int legs) {
this . legs = legs ;

}
//

public void makeSound () {
System . out . println (" ??? ") ;

}
//

public String getClassification () {
if (legs == 2)

return " b iped " ;
else if (legs == 4)

return " quadroped " ;
else

return " u n c l a s s i f i e d " ;
}

}

public class Dog extends Animal {
private String name , owner ;

//
public Dog (String name , String owner) {

super (4) ;
this . name = name ;
this . owner = owner ;

}
//

@Override public void makeSoound () {
System . out . println ("Woof ! ") ;

}
//

public static void main (String [] args) {
Dog dog = new Dog ("Bruno" , "Andrew") ;
System . out . println (" C l a s s i f i c a t i o n : " +

dog . getClassification ()) ;
dog . makeSound () ;

}
}

Abstract Methods and Classes

In C++ we have the notion of pure virtual methods:

They have no implementation in the base class, but must be
implemented by the sub-classes

In Java, these methods are declared as abstract
A class defined with any abstract methods must be declared as
abstract
You cannot instantiate an abstract class! Only a sub-class.
An abstract class may have implementations for non-abstract
methods

Andrew Vardy Brief Intro. to Java: Part 2

abstract class Instrument {
public abstract void play () ;
public String getName () {

return " In s t rument , but you ’ l l "
+ " neve r s e e t h i s ! " ;

}
}

class Drum extends Instrument {
public void play () {

System . out . println ("Bang ! ") ;
}

public String getName () {
return "Drum" ;

}
}

Andrew Vardy Brief Intro. to Java: Part 2

After adding a Guitar class, we can see that Instrument serves to
standardize the interface to sub-classes:

public class TestInstruments {
public static void main (String [] args) {

Instrument [] trio = new Instrument [3] ;
trio [0] = new Drum () ;
trio [1] = new Guitar () ;
trio [2] = new Guitar () ;

// Usage code i s i ndependen t o f
// the c r e a t i o n code above .
for (Instrument inst : trio)

inst . play () ;
}

}

Andrew Vardy Brief Intro. to Java: Part 2

Interfaces

Java goes further than abstract classes. An abstract class might
contain some implementation:

abstract class Instrument {
public abstract void play () ;
public String getName () {

return " Ins t rument , but you ’ l l "
+ " neve r s e e t h i s ! " ;

}
}

But often what we really want is to define the methods that a set
of classes must have, and nothing more. For this purpose, we
have interfaces which have no implementation and public access
for all fields

interface Instrument {
void play () ;
String getName () ;

}

Classes can implement an interface.

class Drum implements Instrument {
public void play () {

System . out . println ("Bang ! ") ;
}

public String getName () {
return "Drum" ;

}
}

Andrew Vardy Brief Intro. to Java: Part 2

Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being
repaired.
interface Vehicle {

void drive (double km) ;
double gasLeft () ;

}

interface Repairable {
boolean canRepair () ;
void repair () ;

}

A boat is a vehicle
An alien spaceship might be a vehicle but is probably not
repairable
A toaster is repairable but is not a vehicle.
A car is both a vehicle and repairable...

class Car implements Vehicle , Repairable {
double mileage = 0 ;
double gas = 100 . 0 ;

//
@Override public void driive (double km) {

mileage += km ;
gas �= km / 1 0 . 0 ;
// Not hand l i n g runn ing out o f gas !

} //
public double gasLeft () {

return gas ;
} //
public boolean canRepair () {

return (mileage < 200000) ;
} //
public void repair () {

System . out . println ("Good as new ! ") ;
} //
public double getMileage () {

return mileage ;
}

}

Features Not Covered

Tools outside the Java language itself:

Annotations (e.g @Override or @Test placed in front of a
method)
Javadoc: Generate API documentation for your code
JAR files: Collections of .class files (and data files)

The final keyword

Constants:

public static final double LIGHTSPEED =
299792458.0;

Various other uses

Inner classes
Exception handling
We saw only a tiny fraction of the Java API!
See links page for more information on these topics

Andrew Vardy Brief Intro. to Java: Part 2

