A Brief Introduction to Java for C++

Programmers: Part 2
ENGI 5895: Software Design

Andrew Vardy

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

January 15, 2017

Andrew Vardy Brief Intro. to Java: Part 2



Coverage of Part 2

This second set of notes focusses on the following features of Java:
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import: using packages

To use a class such as ArrayList from the Java APl you have three
choices:
@ import the class using its full name:
import java.util.ArrayList;
(This statement must go at the top of your .java file, outside
the class)
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import: using packages

To use a class such as ArrayList from the Java APl you have three
choices:
@ import the class using its full name:
import java.util.ArrayList;
(This statement must go at the top of your .java file, outside
the class)
@ import the whole package:
import java.util.x*;

© Utilize the full class name everywhere.
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The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java's equivalent of templates!):

import java.util.ArrayList;
// ALT: import java.util .x;

public class Import {
public static void main(String[] args) {
ArrayList<Integer> list =
new ArraylList<Integer >();

//
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The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java's equivalent of templates!):

import java.util.ArrayList;
// ALT: import java.util .x;

public class Import {
public static void main(String[] args) {
ArrayList<Integer> list =
new ArraylList<Integer >();
//
list.add(new Integer(10)); //

list.add(20); // Shortcut to above form
list.add (30);
//
for (Integer i : list)
System.out.println(i);
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A package is a set of related classes

@ All files belonging to the package must be placed in a
corresponding directory
e.g. files in package avardy.packagel must go in
avardy/packagel (relative to the CLASSPATH directory)

@ A class, member data item, or member method is either
private, public, protected, or has package access, meaning that
it is public within the package:

@ package mypackage;
public class X {
private int 1i;
int j;

}

j is accessible from other classes within the package, but not i



package avardy.packagel;
class A {

int value = 42;
}




package avardy.packagel;
class A {

int value = 42;
}

package avardy.packagel;
class B {
private int value;
public B(A refh) {
// This is OK because A's
// value has package access
value = refA.value;




package avardy.packagel;
class A {

int value = 42;
}

package avardy.packagel;
class B {
private int value;
public B(A refh) {
// This is OK because A's
// value has package access
value = refA.value;

package avardy.packagel;

public class Front {
public static void main(String[] args) {
A refA = new A();
B refB = new B(refld);




Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:

@ No multiple inheritance

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance

@ Singly-rooted hierarchy (all classes inherit from Object)

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax
e C++: class Derived : public Base

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax

e C++: class Derived : public Base
e Java: class Derived extends Base

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax

e C++: class Derived : public Base
e Java: class Derived extends Base

o Utilize super keyword to call the base class constructor or
base class methods
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class Animal {
protected int legs;

public Animal(int legs) {
this.legs = legs;
}

//
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class Animal {
protected int legs;

public Animal(int legs) {
this.legs = legs;
}

public void makeSound() {
System.out.println("?77");
}

public String getClassification() {
if (legs = 2)
return "biped";
else if (legs = 4)
return "quadroped";
else
return "unclassified";

//

//



public class Dog extends Animal {
private String name, owner;

//
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public class Dog extends Animal {
private String name, owner;

//

public Dog(String name, String owner) {

super (4);
this.name = name;
this.owner = owner;

}
//

@0verride public void makeSoound() {
System.out.println("Woof!");
}

//

public static void main(String[] args) {
Dog dog = new Dog("Bruno", "Andrew")
System.out.println(" Classification: " +
dog.getClassification())
dog .makeSound ();



Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:
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Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:

e They have no implementation in the base class, but must be
implemented by the sub-classes

In Java, these methods are declared as abstract

A class defined with any abstract methods must be declared as
abstract

You cannot instantiate an abstract class! Only a sub-class.

An abstract class may have implementations for non-abstract
methods
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abstract class Instrument {
public abstract void play();
public String getName() {
return "Instrument, but you'll
+ "never see this!";
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abstract class Instrument {
public abstract void play();
public String getName() {
return "Instrument, but you'll "
+ "never see this!";

class Drum extends Instrument {
public void play() {
System.out.println("Bang!");
¥

public String getName() {
return "Drum";
}
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After adding a Guitar class, we can see that Instrument serves to
standardize the interface to sub-classes

public class TestInstruments {
public static void main(String[] args) {

Instrument [] trio = new Instrument [3];
trio[0] = new Drum();
trio[l] = new Guitar();

trio[2] = new Guitar();

// Usage code is independent of

// the creation code above.

for (Instrument inst : trio)
inst.play();
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Interfaces

Java goes further than abstract classes. An abstract class might
contain some implementation:

abstract class Instrument {
public abstract void play();
public String getName() {
return "lInstrument, but you’ll
+ "never see this!";

}

But often what we really want is to define the methods that a set
of classes must have, and nothing more. For this purpose, we
have interfaces which have no implementation and public access
for all fields

interface Instrument {
void play();
String getName ();



Classes can implement an interface.

class Drum implements Instrument {
public void play() {
System.out.println("Bang!");
}

public String getName() {
return "Drum";
}
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Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being
repaired.
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Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being

repaired.

interface Vehicle { interface Repairable {
void drive(double km); boolean canRepair ();
double gasLeft(); void repair();

@ A boat is a vehicle

@ An alien spaceship might be a vehicle but is probably not
repairable

@ A toaster is repairable but is not a vehicle.

@ A car is both a vehicle and repairable...



class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;
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class Car implements Vehicle, Repairable {
double mileage = O0;
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@0verride public void driive(double km) {
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class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;

@0verride public void driive(double km)

}

mileage += km;
gas —= km / 10.0;
// Not handling running out of gas!

public double gasLeft() {

}

return gas;

public boolean canRepair() {

}

return (mileage < 200000);

public void repair() {

}

System.out.println("Good as new!");
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class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;

@0verride public void driive(double km) {

}

mileage += km;
gas —= km / 10.0;
// Not handling running out of gas!

public double gasLeft() {

}

return gas;

public boolean canRepair() {

}

return (mileage < 200000);

public void repair() {

}

System.out.println("Good as new!");

public double getMileage() {

}

return mileage;
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/1

/1
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Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

The final keyword
o Constants:

@ public static final double LIGHTSPEED =
299792458.0;

e Various other uses
@ Inner classes
@ Exception handling
@ We saw only a tiny fraction of the Java API!
@ See links page for more information on these topics
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