A Brief Introduction to Java for C++

Programmers: Part 2
ENGI 5895: Software Design

Andrew Vardy

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

January 15, 2017

Andrew Vardy Brief Intro. to Java: Part 2



Coverage of Part 2

This second set of notes focusses on the following features of Java:

o Packages

Andrew Vardy Brief Intro. to Java: Part 2



Coverage of Part 2

This second set of notes focusses on the following features of Java:
o Packages

@ Inheritance

Andrew Vardy Brief Intro. to Java: Part 2



Coverage of Part 2

This second set of notes focusses on the following features of Java:
o Packages
@ Inheritance
@ Abstract Classes and Methods

Andrew Vardy Brief Intro. to Java: Part 2



Coverage of Part 2

This second set of notes focusses on the following features of Java:
o Packages
@ Inheritance
@ Abstract Classes and Methods
@ Interfaces

Andrew Vardy Brief Intro. to Java: Part 2



import: using packages

To use a class such as ArrayList from the Java APl you have three
choices:
@ import the class using its full name:
import java.util.ArrayList;
(This statement must go at the top of your .java file, outside
the class)

Andrew Vardy Brief Intro. to Java: Part 2



import: using packages

To use a class such as ArrayList from the Java APl you have three
choices:
@ import the class using its full name:
import java.util.ArrayList;
(This statement must go at the top of your .java file, outside
the class)

@ import the whole package:
import java.util.x*;

Andrew Vardy Brief Intro. to Java: Part 2



import: using packages

To use a class such as ArrayList from the Java APl you have three
choices:
@ import the class using its full name:
import java.util.ArrayList;
(This statement must go at the top of your .java file, outside
the class)
@ import the whole package:
import java.util.x*;

© Utilize the full class name everywhere.

Andrew Vardy Brief Intro. to Java: Part 2



The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java's equivalent of templates!):

import java.util.ArrayList;
// ALT: import java.util .x;

public class Import {
public static void main(String[] args) {
ArrayList<Integer> list =
new ArraylList<Integer >();

//



The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java's equivalent of templates!):

import java.util.ArrayList;
// ALT: import java.util .x;

public class Import {
public static void main(String[] args) {
ArrayList<Integer> list =
new ArraylList<Integer >();

//

list.add(new Integer (10)); //



The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java's equivalent of templates!):

import java.util.ArrayList;
// ALT: import java.util .x;

public class Import {
public static void main(String[] args) {
ArrayList<Integer> list =
new ArrayList<Integer >();
//
list.add(new Integer(10)); //
list.add(20); // Shortcut to above form



The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java's equivalent of templates!):

import java.util.ArrayList;
// ALT: import java.util .x;

public class Import {
public static void main(String[] args) {
ArrayList<Integer> list =
new ArraylList<Integer >();
//
list.add(new Integer(10)); //

list.add(20); // Shortcut to above form
list.add (30);

//



The following code illustrates import, the container class
ArrayList, and one of the primitive wrapper classes, Integer (it
also introduces generics, Java's equivalent of templates!):

import java.util.ArrayList;
// ALT: import java.util .x;

public class Import {
public static void main(String[] args) {
ArrayList<Integer> list =
new ArraylList<Integer >();
//
list.add(new Integer(10)); //

list.add(20); // Shortcut to above form
list.add (30);
//
for (Integer i : list)
System.out.println(i);



@ A package is a set of related classes



@ A package is a set of related classes

@ All files belonging to the package must be placed in a
corresponding directory
e.g. files in package avardy.packagel must go in
avardy/packagel (relative to the CLASSPATH directory)



@ A package is a set of related classes

@ All files belonging to the package must be placed in a
corresponding directory
e.g. files in package avardy.packagel must go in
avardy/packagel (relative to the CLASSPATH directory)

@ A class, member data item, or member method is either
private, public, protected, or has package access, meaning that
it is public within the package:



@ A package is a set of related classes

@ All files belonging to the package must be placed in a
corresponding directory
e.g. files in package avardy.packagel must go in
avardy/packagel (relative to the CLASSPATH directory)

@ A class, member data item, or member method is either
private, public, protected, or has package access, meaning that
it is public within the package:

@ package mypackage;
public class X {
private int 1i;
int j;



A package is a set of related classes

@ All files belonging to the package must be placed in a
corresponding directory
e.g. files in package avardy.packagel must go in
avardy/packagel (relative to the CLASSPATH directory)

@ A class, member data item, or member method is either
private, public, protected, or has package access, meaning that
it is public within the package:

@ package mypackage;
public class X {
private int 1i;
int j;

}

j is accessible from other classes within the package, but not i



package avardy.packagel;
class A {

int value = 42;
}




package avardy.packagel;
class A {

int value = 42;
}

package avardy.packagel;
class B {
private int value;
public B(A refh) {
// This is OK because A's
// value has package access
value = refA.value;




package avardy.packagel;
class A {

int value = 42;
}

package avardy.packagel;
class B {
private int value;
public B(A refh) {
// This is OK because A's
// value has package access
value = refA.value;

package avardy.packagel;

public class Front {
public static void main(String[] args) {
A refA = new A();
B refB = new B(refld);




Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:

@ No multiple inheritance

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance

@ Singly-rooted hierarchy (all classes inherit from Object)

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax
e C++: class Derived : public Base

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax

e C++: class Derived : public Base
e Java: class Derived extends Base

Andrew Vardy Brief Intro. to Java: Part 2



Inheritance

Inheritance in Java is quite similar to C++ with a few exceptions:
@ No multiple inheritance
@ Singly-rooted hierarchy (all classes inherit from Object)
@ Syntax

e C++: class Derived : public Base
e Java: class Derived extends Base

o Utilize super keyword to call the base class constructor or
base class methods

Andrew Vardy Brief Intro. to Java: Part 2



class Animal {
protected int legs;

public Animal(int legs) {
this.legs = legs;
}

//



class Animal {
protected int legs;

public Animal(int legs) {

this.legs = legs;
}

public void makeSound() {

}

System.out.println("?77");

//

//



class Animal {
protected int legs;

public Animal(int legs) {
this.legs = legs;
}

public void makeSound() {
System.out.println("?77");
}

public String getClassification() {
if (legs = 2)
return "biped";
else if (legs = 4)
return "quadroped";
else
return "unclassified";

//

//



public class Dog extends Animal {
private String name, owner;

//



public class Dog extends Animal {
private String name, owner;

//

public Dog(String name, String owner) {

super (4);
this.name = name;
this.owner = owner;

//



public class Dog extends Animal {
private String name, owner;

//

public Dog(String name, String owner) {

super (4);
this.name = name;
this.owner = owner;

}
//

@0verride public void makeSoound() {
System.out.println("Woof!");
}

//



public class Dog extends Animal {
private String name, owner;

//

public Dog(String name, String owner) {

super (4);
this.name = name;
this.owner = owner;

}
//

@0verride public void makeSoound() {
System.out.println("Woof!");
}

//

public static void main(String[] args) {
Dog dog = new Dog("Bruno", "Andrew")
System.out.println(" Classification: " +
dog.getClassification())
dog .makeSound ();



Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:

Andrew Vardy Brief Intro. to Java: Part 2



Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:

e They have no implementation in the base class, but must be
implemented by the sub-classes

Andrew Vardy Brief Intro. to Java: Part 2



Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:

e They have no implementation in the base class, but must be
implemented by the sub-classes

o In Java, these methods are declared as abstract

Andrew Vardy Brief Intro. to Java: Part 2



Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:

e They have no implementation in the base class, but must be
implemented by the sub-classes

o In Java, these methods are declared as abstract

@ A class defined with any abstract methods must be declared as
abstract

Andrew Vardy Brief Intro. to Java: Part 2



Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:

e They have no implementation in the base class, but must be
implemented by the sub-classes

o In Java, these methods are declared as abstract

@ A class defined with any abstract methods must be declared as
abstract

@ You cannot instantiate an abstract class! Only a sub-class.

Andrew Vardy Brief Intro. to Java: Part 2



Abstract Methods and Classes

@ In C++ we have the notion of pure virtual methods:

e They have no implementation in the base class, but must be
implemented by the sub-classes

In Java, these methods are declared as abstract

A class defined with any abstract methods must be declared as
abstract

You cannot instantiate an abstract class! Only a sub-class.

An abstract class may have implementations for non-abstract
methods

Andrew Vardy Brief Intro. to Java: Part 2



abstract class Instrument {
public abstract void play();
public String getName() {
return "Instrument, but you'll
+ "never see this!";

Andrew Vardy Brief Intro. to Java: Part 2




abstract class Instrument {
public abstract void play();
public String getName() {
return "Instrument, but you'll "
+ "never see this!";

class Drum extends Instrument {
public void play() {
System.out.println("Bang!");
¥

public String getName() {
return "Drum";
}

Andrew Vardy Brief Intro. to Java: Part 2




After adding a Guitar class, we can see that Instrument serves to
standardize the interface to sub-classes

public class TestInstruments {
public static void main(String[] args) {

Instrument [] trio = new Instrument [3];
trio[0] = new Drum();
trio[l] = new Guitar();

trio[2] = new Guitar();

// Usage code is independent of

// the creation code above.

for (Instrument inst : trio)
inst.play();

Andrew Vardy Brief Intro. to Java: Part 2



Interfaces

Java goes further than abstract classes. An abstract class might
contain some implementation:



Interfaces

Java goes further than abstract classes. An abstract class might
contain some implementation:

abstract class Instrument {
public abstract void play();
public String getName() {
return "Instrument, but you'll "
+ "never see this!";



Interfaces

Java goes further than abstract classes. An abstract class might
contain some implementation:

abstract class Instrument {
public abstract void play();
public String getName() {
return "lInstrument, but you’ll
+ "never see this!";

}

But often what we really want is to define the methods that a set
of classes must have, and nothing more. For this purpose, we

have interfaces which have no implementation and public access
for all fields



Interfaces

Java goes further than abstract classes. An abstract class might
contain some implementation:

abstract class Instrument {
public abstract void play();
public String getName() {
return "lInstrument, but you’ll
+ "never see this!";

}

But often what we really want is to define the methods that a set
of classes must have, and nothing more. For this purpose, we
have interfaces which have no implementation and public access
for all fields

interface Instrument {
void play();
String getName ();



Classes can implement an interface.

class Drum implements Instrument {
public void play() {
System.out.println("Bang!");
}

public String getName() {
return "Drum";
}

Andrew Vardy Brief Intro. to Java: Part 2



Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being
repaired.



Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being

repaired.

interface Vehicle { interface Repairable {
void drive(double km); boolean canRepair ();
double gasLeft(); void repair();



Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being

repaired.

interface Vehicle { interface Repairable {
void drive(double km); boolean canRepair ();
double gasLeft(); void repair();

@ A boat is a vehicle



Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being

repaired.

interface Vehicle { interface Repairable {
void drive(double km); boolean canRepair ();
double gasLeft(); void repair();

@ A boat is a vehicle

@ An alien spaceship might be a vehicle but is probably not
repairable



Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being

repaired.

interface Vehicle { interface Repairable {
void drive(double km); boolean canRepair ();
double gasLeft(); void repair();

@ A boat is a vehicle

@ An alien spaceship might be a vehicle but is probably not
repairable

@ A toaster is repairable but is not a vehicle.



Implementing Multiple Interfaces

Some entities can be interacted with in several different ways. For
example, if you have a vehicle you should be able to drive it and
check how much gas is left. Some entities may be capable of being

repaired.

interface Vehicle { interface Repairable {
void drive(double km); boolean canRepair ();
double gasLeft(); void repair();

@ A boat is a vehicle

@ An alien spaceship might be a vehicle but is probably not
repairable

@ A toaster is repairable but is not a vehicle.

@ A car is both a vehicle and repairable...



class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;

/1



class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;
//
@0verride public void driive(double km) {
mileage += km;
gas —= km / 10.0;
// Not handling running out of gas!

¥ /1



class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;
//
@0verride public void driive(double km) {
mileage += km;
gas —= km / 10.0;
// Not handling running out of gas!
¥ /]
public double gasLeft() {
return gas;

¥ /1



class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;

@0verride public void driive(double km) {

}

mileage += km;
gas —= km / 10.0;
// Not handling running out of gas!

public double gasLeft() {

}

return gas;

public boolean canRepair() {

}

return (mileage < 200000);

/1

/1

/1

/1



class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;

@0verride public void driive(double km)

}

mileage += km;
gas —= km / 10.0;
// Not handling running out of gas!

public double gasLeft() {

}

return gas;

public boolean canRepair() {

}

return (mileage < 200000);

public void repair() {

}

System.out.println("Good as new!");

/1

/1

/1

/1

/1



class Car implements Vehicle, Repairable {
double mileage = O0;
double gas = 100.0;

@0verride public void driive(double km) {

}

mileage += km;
gas —= km / 10.0;
// Not handling running out of gas!

public double gasLeft() {

}

return gas;

public boolean canRepair() {

}

return (mileage < 200000);

public void repair() {

}

System.out.println("Good as new!");

public double getMileage() {

}

return mileage;

/1

/1

/1

/1

/1



Features Not Covered

@ Tools outside the Java language itself:

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)
o Javadoc: Generate APl documentation for your code

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

@ The final keyword

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

@ The final keyword

o Constants:

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)
o Javadoc: Generate APl documentation for your code
o JAR files: Collections of .class files (and data files)
@ The final keyword
o Constants:

@ public static final double LIGHTSPEED =
299792458.0;

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

@ The final keyword
o Constants:

@ public static final double LIGHTSPEED =
299792458.0;

e Various other uses

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

@ The final keyword
o Constants:

@ public static final double LIGHTSPEED =
299792458.0;

e Various other uses

@ Inner classes

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

@ The final keyword
o Constants:

@ public static final double LIGHTSPEED =
299792458.0;

e Various other uses

@ Inner classes

@ Exception handling

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

@ The final keyword

o Constants:

@ public static final double LIGHTSPEED =
299792458.0;

e Various other uses
@ Inner classes
@ Exception handling

@ We saw only a tiny fraction of the Java API!

Andrew Vardy Brief Intro. to Java: Part 2



Features Not Covered

@ Tools outside the Java language itself:

o Annotations (e.g @Override or @Test placed in front of a
method)

o Javadoc: Generate APl documentation for your code

o JAR files: Collections of .class files (and data files)

The final keyword
o Constants:

@ public static final double LIGHTSPEED =
299792458.0;

e Various other uses
@ Inner classes
@ Exception handling
@ We saw only a tiny fraction of the Java API!
@ See links page for more information on these topics

Andrew Vardy Brief Intro. to Java: Part 2



