A Brief Introduction to Java for C4++

Programmers: Part 1
ENGI 5895: Software Design

Andrew Vardy

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

January 11, 2017

Andrew Vardy Brief Intro. to Java: Part 1

‘ Java Overview

Programs written in Java are executed on a Java Virtual Machine
(JVM)
@ Java can be run any platform for which a JVM has been
implemented
o “Write once, run anywhere”
@ Java is compiled to an intermediate language called bytecode

e Bytecode is either interpreted, instruction by instruction by the
JVM (slow), or sent through a Just-in-time compiler (JIT)
which translates some of it into machine code just prior to
execution (much faster!)

o Code is written in .java files; These are converted into .class
files (bytecode)

Andrew Vardy Brief Intro. to Java: Part 1

@ You already know C++

@ You understand that this presentation is just a feature
overview. Only a fraction of Java's features are presented and
we barely scratch the surface of the Java API.

Andrew Vardy Brief Intro. to Java: Part 1

@ Designed in the early 90's by Sun Microsystems (now part of
Oracle)
e Motivations:
e Provide an alternative to C++ which reduced developer errors:

o Cleaner syntax (no pointers!)
o Garbage collection vs. manual memory management
o Pure object-oriented language (no global code or data)

o Execute on a wide range of devices
e Execute code directly on a web page

o Java Applets (deprecated); now Java Web Start

@ Since 2008: Primary language for apps on Android

Andrew Vardy Brief Intro. to Java: Part 1

‘ Comparison with other Languages

@ Run time when using a JIT (from
http://en.wikipedia.org/wiki/Java_performance):

o 1-4 times slower than C/C++

e Approximately the same as other JIT compiled languages such
as C#

e Much faster than pure interpreted scripting languages such as
Perl, Python, and Ruby

@ Development time:

o Twice as fast as C++ (from “Thinking in Java")
o Slower than scripting languages
o (Hard to find an objective source for this information)

Andrew Vardy Brief Intro. to Java: Part 1

‘ Everything is an Object

In Java, there is no code that exists outside of a class. Even the
main method must appear within a class:

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");
}

‘ Similar to C++ ‘ Different from C++ ‘

Classes are similarly defined main exists within a class.
(although no .h and .cpp

separation)

public has roughly the same There is a standard String class
meaning, although here it is
used twice for both the class

and the main method

The two components of the Java Platform are the JVM and the
Java API. The API provides a massive set of classes for numerous
applications:

@ String processing

@ Data structures

o Networking

@ Handling media files (images, video, audio, ...)

o Graphical User Interfaces (GUI): AWT, Swing, and JavaFX

@ ...etc

Andrew Vardy Brief Intro. to Java: Part 1

‘ A Point Class in Java

public class Point {
private double x, y;

/* Constructor. x/

public Point(double x, double y) {
this.x = x;
this.y = y;

}

public double getX() { return x; }
public void setX(double inX) { x = inX; }

!/

‘ A Point Class in C++

class Point {
private:
double x, vy,
public:
/+* Constructor. x/
Point (double x, double y) {
this—>x = x;
this—>y = vy,

1

double getX() { return x; };

void setX(double inX) { x = inX; };

/]
}s
In C++ we can implement methods within the .h file or the .cpp
file. In Java there is only the .java file.

‘ Testing the Point Class in C++

#include <iostream>
#include "Point.h"
using namespace std;

int main(int argc, char *xargv) {

// Here we construct the object on the stack.
Point p(4, 10);

// Calling a public method
p.setX(5);

// Using the overloaded "<<" to concatenate.
cout << "x: " << p.getX() << endl;

Andrew Vardy Brief Intro. to Java: Part 1

Testing the Point Class in Java

// No including type stuff required (yet)

public class TestPoint {
public static void main(String[] args) {

// Objects are always constructed on heap
Point p = new Point(4, 10);

/]
// p is called a reference variable
p.setX(5);

!/

// String concatenation with +

System.out.println("x: " + p.getX());

Andrew Vardy Brief Intro. to Java: Part 1

Variables: Primitive Types

All variables are either primitive types or references.

Primitive Types (most common in bold):
o byte, short, int, long, float, double, boolean, char.
@ int: 32-bit integers from -2,147,483,648 to 2,147,483,647
o double: 64-bit rational numbers

o 15 significant decimal digits; range of about +1.7 x 103%8

boolean: Boolean values written as true or false

char: 16-bit characters

Andrew Vardy Brief Intro. to Java: Part 1

‘ Usage of Primitives Similar to C++ Initialization of Primitive Data Members

Primitive members initialized to 0 (false for booleans).
public class Primitivesl {

public static void main(String[] args) {
// Declare and utilize as in C++.

public class Primitives2 {
private int i, j; // Will be initialized to O
private long k = 12;

int i = 4;
i++; . o
System.out.println("i: " + i); public Primitives2() {
'] = 7; j was already initialized to 0.
// J J y
// Error to use an uninitialized value! }
/] double x; . . . //
// System.out.println("x: " + x): public void printOut() {
Y // System.out.println("i: " + i 4+ ", j: " + j
] .] .
// Logic and comparison . + ", k: + k);
boolean a = false; } //
boolean output = a && (i < 100); // Lazy! public static void main(String[] args) {
System.out.println("output: " + output); Primitives2 p2 = new Primitives2();

p2.printOut (); // A method calll

}
}

You can convert between types where the appropriate widening int: 10 digits max., long: 19 digits max.
relationships exist: float 6-7 significant digits, double 15 significant digits
long >>> int >>> short >>> byte double >>> float public class Primitives4d {

public static void main(String[] args) {

publlcbi}asstpz}mltlYZﬁ { (String]] W long 1 = 92233720368547758071;
pubtic static void Mainlstiing args float £ = 2.0F; // Use suffix F for floats
// Maximum values for each type. /]
byte b = 127;

S
long 1 = 92233720368547758071; // Suffix | /] Loss of precision

// Sroten

1= b /] System.out.println("l: " + 1);

L : cout.println("f: " + £);
// b=1—1; // Can't do this // System.out.printin(+ 1) 1

o) System.out.println("l = f: " + (1 = f));
// If you know the loss of precision is />7 The Iongpis conE/erted o Flo(at)
[/ acceptable you can cast between types. // in the comparison, so the result is true
b = (byte) (1 — 1); ¥ '
))

‘ Control Flow Statements

public class ControlFlow {
public static void main(String|[] args) {
// Loops, if—else, statements, all as CH+
for (int i=0; i<3; i++)
System.out.println("i: " 4+ i);
//
// But the conditions for these statements
// only accept booleans!
int i = 3;
// while (i) { // Can't do this
while (i > 0) {
System.out.println("i: " 4+ i);

i——;

Andrew Vardy Brief Intro. to Java: Part 1

‘ Where Variables Live and Garbage Collection

o Local variables, including both primitive types and references
live on the stack.

@ Objects (but not references) are allocated with new and live
on the heap.

@ There is no delete keyword! When there are no references to
an object remaining, the object becomes available to the
garbage collector (GC).

o The GC uses its own logic to determine when to re-claim
unused memory. Therefore, you should not make any
assumptions about when your object is deleted.

e There is no destructor in Java, but there is a finalize method
that is used in unusual circumstances to de-allocate memory
allocated using a non-standard mechanism (e.g. via C++).

Andrew Vardy Brief Intro. to Java: Part 1

‘ Reference Variables

Objects are referred to through reference variables, which are
essentially pointers without the horrible syntax.

public class References {
public static void main(String[] args) {
// Declare a reference to a new Point
Point a = new Point (0, 0);
//

// Another reference 'pointing’ ' at
// the same object
Point b = a;

!/
b.setX(42);
System.out.println("a.getX(): " 4+ a.getX())

Andrew Vardy Brief Intro. to Java: Part 1

Garbage collection may occur when no references to an object
remain. References can go away by going out of scope or by being
explicitly set to null. (Aside: Uninitialized ref’s are set to null).

public class GarbageCollection {

public static void main(String[] args) {
Point a = new Point (0, 0); //
{
Point b = a; //
{

Point ¢ = b;
// Now three ref's to object

// Now two
/]
a = null; // Now just one
}
// No ref's to object. It can be garbage

/] collected. (But don’'t count on itl!)

‘ Reference Equivalence vs. Object Equivalence

If a comparison operator such as == is applied to a reference
variable, it is applied to the reference, not the object.

public class RefEquiv {
public static void main(String[] args) {
Point pl = new Point(2, ;
Point p2 = new Point (2, 0);
Point aliasl = pi;

/1l
// pl and aliasl refer to same object
System.out.println("pl = aliasl: " + (pl = aliasl)]
/1l
// pl and aliasl refer to different objects
System.out.println("pl = p2: " 4+ (pl = p2));
/1
// Output:
// pl == aliasl: true

// pl = p2: false

Arrays in Java: (1) They are actual objects and have a public
length data member; (2) Arrays of primitives are automatically
initialized; (3) Out-of-bounds access generates an exception.

public class Arraysl {
public static void main(String[] args) {
// Array declaration and initialization
int [] array = new int[10];
!/
// Array access. Also, use of length
for (int i=0; i < array.length; i++)
assert array[i] = O;
!/
// Java arrays check their index!
int i = array[10]; // Exception thrown

useful methods that can be applied to any object.

public class ObjectExample {
public static void main(String[] args) {
Point p = new Point (2, 0);

System.out.println(p.toString());
// Output: Point@6d06d69c

Class pClass = p.getClass();
System.out.println(pClass.getName()
// Output: Point

‘ Singly-Rooted Hierarchy

The Java class hierarchy, including standard Java API classes and
your classes, all inherit from the Object class. This provides several

//
//

Creating an array of objects does not create the actual objects.

public class Arrays2 {
public static void main(String[] args) {
String[] array = new String[3];

// No actual strings have been created!

// The for—each construct
for (String s : array)
System.out.println(s); // Prints

for (int i=0; i<array.length; i++)

//

null!

//

array[i] = new String("string #" + i);

// OR array[i] = "string #" + i;

/] Aggregate initialization is possible

Point [] points = { new Point(1l,1),
new Point(2,2) };

//

‘ this keyword

Two uses: (1) Refer to current object; (2) Call other constructor

public class Rectangle {
private int x, y, width, height;

public Rectangle(int x, int y, int w, int h) {

this.x = x;
this.y = y;
width = w; // 'this' not needed here
height = h;
} //

public Rectangle() {
this(0, 0, 0, 0); // Unnecessary
} !/
public Rectangle(int width, int height) {
this(0, 0, width, height);

} //

