
Introduction

ENGI 5895: Software Design

Andrew Vardy

Faculty of Engineering & Applied Science

Memorial University of Newfoundland

January 4, 2018

Andrew Vardy Introduction



What is this course about?

Many people can program, but are they Software Engineers? A
Software Engineer is someone who can do the following:

Ensure the correctness of their software
Develop efficient solutions
Design systems which are flexible, reusable, and
maintainable

Communicate the design and behaviour of a software system

This course focusses on the last two points, but we will always be
mindful of correctness and efficiency.

Andrew Vardy Introduction



What is this course about?

Many people can program, but are they Software Engineers? A
Software Engineer is someone who can do the following:

Ensure the correctness of their software
Develop efficient solutions
Design systems which are flexible, reusable, and
maintainable

Communicate the design and behaviour of a software system

This course focusses on the last two points, but we will always be
mindful of correctness and efficiency.

Andrew Vardy Introduction



What is this course about?

Many people can program, but are they Software Engineers? A
Software Engineer is someone who can do the following:

Ensure the correctness of their software
Develop efficient solutions
Design systems which are flexible, reusable, and
maintainable

Communicate the design and behaviour of a software system

This course focusses on the last two points, but we will always be
mindful of correctness and efficiency.

Andrew Vardy Introduction



What is this course about?

Many people can program, but are they Software Engineers? A
Software Engineer is someone who can do the following:

Ensure the correctness of their software
Develop efficient solutions
Design systems which are flexible, reusable, and
maintainable

Communicate the design and behaviour of a software system

This course focusses on the last two points, but we will always be
mindful of correctness and efficiency.

Andrew Vardy Introduction



What is this course about?

Many people can program, but are they Software Engineers? A
Software Engineer is someone who can do the following:

Ensure the correctness of their software
Develop efficient solutions
Design systems which are flexible, reusable, and
maintainable

Communicate the design and behaviour of a software system

This course focusses on the last two points, but we will always be
mindful of correctness and efficiency.

Andrew Vardy Introduction



What is this course about?

Many people can program, but are they Software Engineers? A
Software Engineer is someone who can do the following:

Ensure the correctness of their software
Develop efficient solutions
Design systems which are flexible, reusable, and
maintainable

Communicate the design and behaviour of a software system

This course focusses on the last two points, but we will always be
mindful of correctness and efficiency.

Andrew Vardy Introduction



What is this course about?

Many people can program, but are they Software Engineers? A
Software Engineer is someone who can do the following:

Ensure the correctness of their software
Develop efficient solutions
Design systems which are flexible, reusable, and
maintainable

Communicate the design and behaviour of a software system

This course focusses on the last two points, but we will always be
mindful of correctness and efficiency.

Andrew Vardy Introduction



Flexibility, Reusability, and Maintainability

You have developed software that behaves correctly and efficiently
in scenario A.

Flexibility: Your boss adds scenario B. How much effort does
it take to make it work?
Reusability: You realize that part of your code might actually
be useful in scenarios X and Y. How much effort does it take
to isolate the parts that you need?
Maintainable: Over time features are added and bugs are
corrected. How much effort does it take to make these changes
and to continue making similar changes in the long-run?

We will discuss object-oriented design principles and patterns to
address these concerns.

Andrew Vardy Introduction



Flexibility, Reusability, and Maintainability

You have developed software that behaves correctly and efficiently
in scenario A.

Flexibility: Your boss adds scenario B. How much effort does
it take to make it work?
Reusability: You realize that part of your code might actually
be useful in scenarios X and Y. How much effort does it take
to isolate the parts that you need?
Maintainable: Over time features are added and bugs are
corrected. How much effort does it take to make these changes
and to continue making similar changes in the long-run?

We will discuss object-oriented design principles and patterns to
address these concerns.

Andrew Vardy Introduction



Flexibility, Reusability, and Maintainability

You have developed software that behaves correctly and efficiently
in scenario A.

Flexibility: Your boss adds scenario B. How much effort does
it take to make it work?
Reusability: You realize that part of your code might actually
be useful in scenarios X and Y. How much effort does it take
to isolate the parts that you need?
Maintainable: Over time features are added and bugs are
corrected. How much effort does it take to make these changes
and to continue making similar changes in the long-run?

We will discuss object-oriented design principles and patterns to
address these concerns.

Andrew Vardy Introduction



Flexibility, Reusability, and Maintainability

You have developed software that behaves correctly and efficiently
in scenario A.

Flexibility: Your boss adds scenario B. How much effort does
it take to make it work?
Reusability: You realize that part of your code might actually
be useful in scenarios X and Y. How much effort does it take
to isolate the parts that you need?
Maintainable: Over time features are added and bugs are
corrected. How much effort does it take to make these changes
and to continue making similar changes in the long-run?

We will discuss object-oriented design principles and patterns to
address these concerns.

Andrew Vardy Introduction



Flexibility, Reusability, and Maintainability

You have developed software that behaves correctly and efficiently
in scenario A.

Flexibility: Your boss adds scenario B. How much effort does
it take to make it work?
Reusability: You realize that part of your code might actually
be useful in scenarios X and Y. How much effort does it take
to isolate the parts that you need?
Maintainable: Over time features are added and bugs are
corrected. How much effort does it take to make these changes
and to continue making similar changes in the long-run?

We will discuss object-oriented design principles and patterns to
address these concerns.

Andrew Vardy Introduction



Flexibility, Reusability, and Maintainability

You have developed software that behaves correctly and efficiently
in scenario A.

Flexibility: Your boss adds scenario B. How much effort does
it take to make it work?
Reusability: You realize that part of your code might actually
be useful in scenarios X and Y. How much effort does it take
to isolate the parts that you need?
Maintainable: Over time features are added and bugs are
corrected. How much effort does it take to make these changes
and to continue making similar changes in the long-run?

We will discuss object-oriented design principles and patterns to
address these concerns.

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Communication

This course is also about communication. Software gets very
complicated very quickly! How can you communicate the essential
ideas behind your design...

to yourself, when you look at your code two years from now
You pepper your code with comments, but what’s the big
picture?

to your peers
How can they use, modify, or extend your code? Is it so hard
to explain that you might as well make the changes yourself?

to your boss, to explain the difficulty of the problem you are
addressing

“What do you mean you need more time? Can’t you just make
it work?”

In this course you will learn to describe your designs using the
Unified Modelling Language (UML).

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Deliverables

Two assignments (15%):
Complete individually or in pairs
Assign. 1: Implement a given design
Assign. 2: Design a system

Labs (0%)
Familiarization with Java IDE (Eclipse) and Visual Paradigm
CASE tool

CASE = Computer-Aided Software Engineering

Project (60%):
Teams of 2-3
Choose your own stand-alone software system to implement
(e.g. game, simulation, application,...)
Project includes both design and implementation

Two mid-term exams (25%)

Andrew Vardy Introduction



Communicating your design

You will document your designs in carefully written reports
that include helpful UML diagrams
In the project, there will be design review meetings where you
will present your design and explain its rationale and history
It is your responsibility to highlight and explain the

principles and patterns utilized in your design!

You will demo your working programs and submit clean and
carefully documented source code

Andrew Vardy Introduction



Communicating your design

You will document your designs in carefully written reports
that include helpful UML diagrams
In the project, there will be design review meetings where you
will present your design and explain its rationale and history
It is your responsibility to highlight and explain the

principles and patterns utilized in your design!

You will demo your working programs and submit clean and
carefully documented source code

Andrew Vardy Introduction



Communicating your design

You will document your designs in carefully written reports
that include helpful UML diagrams
In the project, there will be design review meetings where you
will present your design and explain its rationale and history
It is your responsibility to highlight and explain the

principles and patterns utilized in your design!

You will demo your working programs and submit clean and
carefully documented source code

Andrew Vardy Introduction



Communicating your design

You will document your designs in carefully written reports
that include helpful UML diagrams
In the project, there will be design review meetings where you
will present your design and explain its rationale and history
It is your responsibility to highlight and explain the

principles and patterns utilized in your design!

You will demo your working programs and submit clean and
carefully documented source code

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction



Course outline

Introduction
The Unified Modelling Language (UML)

Class and sequence diagrams; use cases

Brief introduction to Java
Development Processes
Design Principles

e.g. The Single-Responsibility Principle: “A class should have
only one reason to change”

Design Patterns
e.g. Iterator

Various bits of technology needed for the project:
GUI, graphics, networking, etc...

Andrew Vardy Introduction


