
© 2017, T. S. Norvell, A. Vardy 1 / 34

Introduction to UML and
Class Diagrams

Engineering 5895

Faculty of Engineering & Applied Science

Memorial University of Newfoundland

© 2017, T. S. Norvell, A. Vardy 2 / 34

UML

 Unified Modelling Language (UML)
 UML is a graphical modelling Language

 graphical --- UML documents are diagrams
 modelling --- UML is for describing systems
 systems --- may be software systems or domains

(e.g. business systems), etc.

 It is semi-formal
 The UML definition tries to give a reasonably well

defined meaning to each construct

© 2017, T. S. Norvell, A. Vardy 3 / 34

Three Ways of Using UML
 UML as sketch

 Used to sketch out some aspects of the system
 Create diagrams only for important classes and interactions

 UML as blueprint
 Complete design for the whole system
 Interfaces for all subsystems specified (but not

implementation!)

 UML as programming language
 Diagrams compiled directly to executable code!
 Neat idea, but not yet mainstream

 We will utilize UML as sketch in this course

© 2017, T. S. Norvell, A. Vardy 4 / 34

Classes

 Classes are specifications for objects
 Parts of a class:

 Name
 Set of attributes (aka data members or fields)
 Set of operations

 Constructors: initialize the object state
 Accessors: report on the object state
 Mutators: alter the object state
 Destructors: clean up (not used in Java)

© 2017, T. S. Norvell, A. Vardy 5 / 34

C++ Representation of a Class
class Point {
private:
 double x, y;
public:
 /* Constructor. */
 Point(double x, double y) {
 this->x = x;
 this->y = y;
 };
 double getX() { return x; };
 void setX(double inX) { x = inX; };
 // ...
};

Attributes

Operations

© 2017, T. S. Norvell, A. Vardy 6 / 34

Java Representation of a Class

public class Point {
 private double x, y;

 /* Constructor. */
 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX() { return x; }
 public void setX(double inX) { x = inX; }
 // ...
}

Attributes

Operations

© 2017, T. S. Norvell, A. Vardy 7 / 34

A Student Class in Java

class Student {
private long studNum ;

private String name ;

public Student(long sn, String nm) {

studNum = sn; name = nm; }
public String getName() { return name; }

public long getNumber() { return studNum; }

}

Name

Attributes

Operations

© 2017, T. S. Norvell, A. Vardy 8 / 34

UML Representation of a Class

- private

+ public

UML syntax: +/- name : type

© 2017, T. S. Norvell, A. Vardy 9 / 34

Classes in UML

UML can be used for many purposes.
 In software design UML classes usually

correspond to classes in the code.
 But in domain analysis UML classes are

typically classes of real objects (e.g. real
students) rather than their software
representations.

© 2017, T. S. Norvell, A. Vardy 10 / 34

Usage of (Software) Classes in Java

A class C can be used in 3 ways:
 Instantiation. You can use C to create new

objects.
 Example: new C()

 Extension. You can use C as the basis for
implementing other classes
 Example: class D extends C { … }

 Type. You can use C as a type
 Examples: C func(C p) { C q ;… }

© 2017, T. S. Norvell, A. Vardy 11 / 34

Relationships Between Classes

 Association
 Aggregation
 Composition
 Dependence
 Generalization

© 2017, T. S. Norvell, A. Vardy 12 / 34

Association Relationships

 Association is a general purpose relationship
between classes.

 Associations are typically named.
 Associations are often implemented with

pointers (C++) or reference variables (Java)

Student Section
takes

© 2017, T. S. Norvell, A. Vardy 13 / 34

Department
Head

Department 11

DepartmentMember

1..*

11

1..*

Multiplicity Constraints

 Each Department is
associated with one
DepartmentHead and at
least one
DepartmentMember

 Each DepartmentHead
and DepartmentMember
is associated with one
Department

 No constraint means
multiplicity is unspecified

© 2017, T. S. Norvell, A. Vardy 14 / 34

Role names

 Role names may be
given to the ends of an
association

 Only name roles when
it adds clarity

Student

Professor

Section
takes

1..*

1..*

teaches

assigned section

instructor1..*

© 2017, T. S. Norvell, A. Vardy 15 / 34

Navigability

 An arrow-head
indicates the direction
of navigability.

 E.g. Given a student
object, we can easily
find all Sections the
student is taking.

 No arrow-head: means
navigability in both
directions.

DepartmentHeadDepartment
1 11 1

SectionStudent
takes

© 2017, T. S. Norvell, A. Vardy 16 / 34

Implementing Navigable
Associations
Usually implemented with data members

class Student {
private List<Section> sections; … }

class Department {
private DepartmentHead deptHead; … }

DepartmentHeadDepartment
1 11 1

SectionStudent
takes

*

© 2017, T. S. Norvell, A. Vardy 17 / 34

Implementing Associations
Indirectly
 An association between objects might also be

stored outside of the objects
class Department {
private static Map<Department,DepartmentHead>

heads = new<Department,DepartmentHead>
HashMap();

DepartmentHead getHead() {
return heads.get(this);

}

…

}

© 2017, T. S. Norvell, A. Vardy 18 / 34

Aggregation

 Aggregation is a special case of association.
 It is used when there is a “whole-part” relationship

between objects.
 Denoted with an unfilled diamond at the “whole” end
 eg. A Club is an aggregation of Persons (the

members of the club)

© 2017, T. S. Norvell, A. Vardy 19 / 34

Composition

 Composition is a special case of aggregation
 Composition is appropriate when

 each part is a part of one whole
 the lifetime of the whole and the part are the same

 Denoted by a solid diamond at the “whole” end
 eg.

– A Polygon is composed of 3 or more Points

© 2017, T. S. Norvell, A. Vardy 20 / 34

Composition vs. Aggregation
 The difference between composition and aggregation is

lifetime
 For example, if whenever the points that compose it are

destroyed, the polygon is destroyed (and vice versa) then
we have composition

 But maybe this is not what what we want. If we allow the
points to exist independently of the polygon, then we can
also use them to define other shapes

© 2017, T. S. Norvell, A. Vardy 21 / 34

Note: Class Diagrams Show Class
Relationships, Not Object
Relationships
 Consider again this example:

 We're not saying that the same points (i.e.
instances of Point) are necessarily shared
by Polygons and Circles, but they could be

© 2017, T. S. Norvell, A. Vardy 22 / 34

Recursive associations

 Associations may relate
a class to itself.

 The objects of the class
may or may not be
associated with
themselves.

 (For example, the left and right
children of a node would not
be that node. But a
GraphNode object might be its
own neighbour.)

AVLTreeNode
0..10..1

-leftChild
-rightChild0..1 0..1

GraphNode

0..*0..* -neighbours

Component
(from awt)

0..*0..*
contains

© 2017, T. S. Norvell, A. Vardy 23 / 34

Associations vs. attributes

OR

 Both are usually implemented by variables within the class
– Fields (Java), data members (C++).

 Use association for references that point to classes or
interfaces.

– Or use aggregation or composition if appropriate
 Use attributes for primitive types such as int, boolean, char

© 2017, T. S. Norvell, A. Vardy 24 / 34

Degrees of belonging

 Attribute. Lifetime of attribute equals life time
of object that contains it.

 Aggregation. Whole-part relationship, but
parts could be parts of several wholes, or
could migrate from one container to another.

 Composition. Lifetime of the part equals or is,
by design, nested within the lifetime of the
whole.

 Association. Relationship is not part/whole.

© 2017, T. S. Norvell, A. Vardy 25 / 34

Generalization/Specialization
 Represents “is-a-kind-

of’’ relationships.
 E.g. every Chimp is

also an Ape.
 In OO implementation it

represents class
inheritance: Inheritance
of interface and of
implementation too.

Primate

Ape

Chimp Person

DepartmentHead DepartmentMember

© 2017, T. S. Norvell, A. Vardy 26 / 34

Pausing here to introduce
Inheritance, Abstract Classes and
Methods, and Interfaces in Java

© 2017, T. S. Norvell, A. Vardy 27 / 34

Interfaces

 Interfaces are classes
that have no associated
implementation.

 I.e.
 no attributes,
 no implementations for

any operations
 In UML use either

stereotype to indicate
an interface, or
“lollypop”

CharSource

CharSource

getNextChar()
endOfSequence()

<<interface>>

Class
notation

Lollypop

Stereotypes
are given in
angle brackets

© 2017, T. S. Norvell, A. Vardy 28 / 34

Realization

 Classes “specialize”
classes, but “realize”
interfaces. Similar
concept, similar
notation. (Note dashes)

 Choice of notations.
Diagrams at right are
equivalent.

CharSource

TestCharInput

CharSource

getNextChar()
endOfSequence()

<<interface>>

TestCharInput

© 2017, T. S. Norvell, A. Vardy 29 / 34

Generalization/Specialization and
Realization in Java
UML terminology Java terminology

C specializes D C extends D

C realizes D C implements D

class TestCharInput
 extends TestInput
 implements CharSource
{
 …
} CharSource

<<interface>>

TestCharInput

TestInput

© 2017, T. S. Norvell, A. Vardy 30 / 34

Abstract operations

 An operation O is “abstract” in class C if it does not
have an implementation in class C.

 The implementation of the operation will be filled in
in specializations of C.

 abstract class TreeNode {
abstract int height() ; … }

class Leaf extends TreeNode {
int height() { return 1 ; } … }

class Branch extends TreeNode {
int height(){return 1 + Math.max(l.height(),

 r.height() ; } … }

© 2017, T. S. Norvell, A. Vardy 31 / 34

Abstract in Visual Paradigm (VP)

 In VP classes are made
abstract with a
checkbox in the
specification.

 Likewise for operations
(class must be abstract
first).

 Italics indicate
abstractness

Leaf

height() : int

Branch

height() : int

TreeNode

height() : int
11 left

1

right

© 2017, T. S. Norvell, A. Vardy 32 / 34

Abstract and Concrete classes

 Classes that have abstract operations can not be
instantiated --- since this would mean that there is
no implementation associated with one of the
object’s operations

 Classes that can not be instantiated are called
abstract classes.

 Classes that can be are called concrete
 In UML use the <<abstract>> stereotype for abstract

classes and operations.
 Alternatively: The name of the abstract class or operation is

in italics.

© 2017, T. S. Norvell, A. Vardy 33 / 34

Dependence

Dependence is the weakest form of relationship

A class C depends on class D if the
implementation or interface of C even
mentions D

For example if C has an operation that has a
– parameter
– local variable
– return type

of type D

© 2017, T. S. Norvell, A. Vardy 34 / 34

Dependence

 Dependence relations are important to note
because unneeded dependence makes
components...
 harder to reuse in another context
 harder to isolate for testing
 harder to write/understand/maintain, as the

depended on classes must also be understood
 It is better to depend on an interface than on

a class.
 More on this later...

