
© 2017, T. S. Norvell, A. Vardy 1 / 34

 

Introduction to UML and
Class Diagrams

Engineering 5895

Faculty of Engineering & Applied Science

Memorial University of Newfoundland



© 2017, T. S. Norvell, A. Vardy 2 / 34

 

UML

 Unified Modelling Language (UML)
 UML is a graphical modelling Language

 graphical --- UML documents are diagrams
 modelling --- UML is for describing systems
 systems --- may be software systems or domains 

(e.g. business systems), etc.

 It is semi-formal
 The UML definition tries to give a reasonably well 

defined meaning to each construct



© 2017, T. S. Norvell, A. Vardy 3 / 34

 

Three Ways of Using UML
 UML as sketch

 Used to sketch out some aspects of the system
 Create diagrams only for important classes and interactions

 UML as blueprint
 Complete design for the whole system
 Interfaces for all subsystems specified (but not 

implementation!)

 UML as programming language
 Diagrams compiled directly to executable code!
 Neat idea, but not yet mainstream

 We will utilize UML as sketch in this course



© 2017, T. S. Norvell, A. Vardy 4 / 34

 

Classes

 Classes are specifications for objects
 Parts of a class:

 Name
 Set of attributes (aka data members or fields)
 Set of operations 

 Constructors: initialize the object state
 Accessors: report on the object state
 Mutators: alter the object state
 Destructors: clean up (not used in Java)



© 2017, T. S. Norvell, A. Vardy 5 / 34

 

C++ Representation of a Class
class Point {
private:
    double x, y;
public:
    /* Constructor. */
    Point(double x, double y) {
        this->x = x;
        this->y = y;
    };
    double getX() { return x; };
    void setX(double inX) { x = inX; };
    // ...
};

Attributes

Operations



© 2017, T. S. Norvell, A. Vardy 6 / 34

 

Java Representation of a Class

public class Point {
    private double x, y;

    /* Constructor. */
    public Point(double x, double y) {
        this.x = x;
        this.y = y;
    }

    public double getX() { return x; }
    public void setX(double inX) { x = inX; }
    // ...
}

Attributes

Operations



© 2017, T. S. Norvell, A. Vardy 7 / 34

 

A Student Class in Java

class Student {
private long studNum ;

private String name ;

public Student( long sn, String nm ) {

studNum = sn; name = nm; }
public String getName() { return name; }

public long getNumber() { return studNum; }

}

Name

Attributes

Operations



© 2017, T. S. Norvell, A. Vardy 8 / 34

 

UML Representation of a Class

- private

+ public

UML syntax: +/- name : type



© 2017, T. S. Norvell, A. Vardy 9 / 34

 

Classes in UML

UML can be used for many purposes.
 In software design UML classes usually 

correspond to classes in the code.
 But in domain analysis UML classes are 

typically classes of real objects (e.g. real 
students) rather than their software 
representations.



© 2017, T. S. Norvell, A. Vardy 10 / 34

 

Usage of (Software) Classes in Java

A class C can be used in 3 ways:
 Instantiation. You can use C to create new 

objects.
 Example: new C()

 Extension. You can use C as the basis for 
implementing other classes
 Example: class D extends C { … }

 Type. You can use C as a type
 Examples: C func( C p ) { C q ;… }



© 2017, T. S. Norvell, A. Vardy 11 / 34

 

Relationships Between Classes

 Association
 Aggregation
 Composition
 Dependence
 Generalization



© 2017, T. S. Norvell, A. Vardy 12 / 34

 

Association Relationships

 Association is a general purpose relationship 
between classes.

 Associations are typically named.
 Associations are often implemented with 

pointers (C++) or reference variables (Java)

Student Section
takes



© 2017, T. S. Norvell, A. Vardy 13 / 34

 

Department
Head

Department 11

DepartmentMember

1..*

11

1..*

Multiplicity Constraints

 Each Department is 
associated with one 
DepartmentHead and at 
least one 
DepartmentMember

 Each DepartmentHead 
and DepartmentMember 
is associated with one 
Department

 No constraint means 
multiplicity is unspecified



© 2017, T. S. Norvell, A. Vardy 14 / 34

 

Role names

 Role names may be 
given to the ends of an 
association

 Only name roles when 
it adds clarity

Student

Professor

Section
takes

1..*

1..*

teaches

assigned section

instructor1..*



© 2017, T. S. Norvell, A. Vardy 15 / 34

 

Navigability

 An arrow-head 
indicates the direction 
of navigability.

 E.g. Given a student 
object, we can easily 
find all Sections the 
student is taking.

 No arrow-head: means 
navigability in both 
directions. 

DepartmentHeadDepartment
1 11 1

SectionStudent
takes



© 2017, T. S. Norvell, A. Vardy 16 / 34

 

Implementing Navigable 
Associations
Usually implemented with data members

class Student {
private List<Section> sections; … }

class Department {
private DepartmentHead deptHead;  … }

DepartmentHeadDepartment
1 11 1

SectionStudent
takes

*



© 2017, T. S. Norvell, A. Vardy 17 / 34

 

Implementing Associations 
Indirectly
 An association between objects might also be 

stored outside of the objects
class Department {
private static Map<Department,DepartmentHead> 

heads = new<Department,DepartmentHead> 
HashMap();

DepartmentHead getHead() {
return heads.get(this);

}

…

}



© 2017, T. S. Norvell, A. Vardy 18 / 34

 

Aggregation

 Aggregation is a special case of association.
 It is used when there is a “whole-part” relationship 

between objects.
 Denoted with an unfilled diamond at the “whole” end
 eg. A Club is an aggregation of Persons (the 

members of the club)



© 2017, T. S. Norvell, A. Vardy 19 / 34

 

Composition

 Composition is a special case of aggregation
 Composition is appropriate when

 each part is a part of one whole
 the lifetime of the whole and the part are the same

 Denoted by a solid diamond at the “whole” end
 eg.

– A Polygon is composed of 3 or more Points



© 2017, T. S. Norvell, A. Vardy 20 / 34

 

Composition vs. Aggregation
 The difference between composition and aggregation is 

lifetime
 For example, if whenever the points that compose it are 

destroyed, the polygon is destroyed (and vice versa) then 
we have composition

 But maybe this is not what what we want.  If we allow the 
points to exist independently of the polygon, then we can 
also use them to define other shapes



© 2017, T. S. Norvell, A. Vardy 21 / 34

 

Note: Class Diagrams Show Class 
Relationships, Not Object 
Relationships
 Consider again this example:

 We're not saying that the same points (i.e. 
instances of Point) are necessarily shared 
by Polygons and Circles, but they could be



© 2017, T. S. Norvell, A. Vardy 22 / 34

 

Recursive associations

 Associations may relate 
a class to itself.

 The objects of the class 
may or may not be 
associated with 
themselves.

 (For example, the left and right 
children of a node would not 
be that node. But a 
GraphNode object might be its 
own neighbour.)

AVLTreeNode
0..10..1

-leftChild
-rightChild0..1 0..1

GraphNode

0..*0..* -neighbours

Component
(from awt)

0..*0..*
contains



© 2017, T. S. Norvell, A. Vardy 23 / 34

 

Associations vs. attributes

OR

 Both are usually implemented by variables within the class
– Fields (Java), data members (C++).

 Use association for references that point to classes or 
interfaces.

– Or use aggregation or composition if appropriate
 Use attributes for primitive types such as int, boolean, char



© 2017, T. S. Norvell, A. Vardy 24 / 34

 

Degrees of belonging

 Attribute. Lifetime of attribute equals life time 
of object that contains it.

 Aggregation. Whole-part relationship, but 
parts could be parts of several wholes, or 
could migrate from one container to another.

 Composition. Lifetime of the part equals or is, 
by design, nested within the lifetime of the 
whole.

 Association. Relationship is not part/whole.



© 2017, T. S. Norvell, A. Vardy 25 / 34

 

Generalization/Specialization
 Represents “is-a-kind-

of’’ relationships.
 E.g. every Chimp is 

also an Ape.
 In OO implementation it 

represents class 
inheritance: Inheritance 
of interface and of 
implementation too.

Primate

Ape

Chimp Person

DepartmentHead DepartmentMember



© 2017, T. S. Norvell, A. Vardy 26 / 34

 

Pausing here to introduce 
Inheritance, Abstract Classes and 
Methods, and Interfaces in Java



© 2017, T. S. Norvell, A. Vardy 27 / 34

 

Interfaces

 Interfaces are classes 
that have no associated 
implementation.

 I.e.
 no attributes,
 no implementations for 

any operations
 In UML use either 

stereotype to indicate 
an interface, or 
“lollypop”

CharSource

CharSource

getNextChar()
endOfSequence()

<<interface>>

Class 
notation

Lollypop

Stereotypes 
are given in 
angle brackets



© 2017, T. S. Norvell, A. Vardy 28 / 34

 

Realization

 Classes “specialize” 
classes, but “realize” 
interfaces. Similar 
concept, similar 
notation. (Note dashes)

 Choice of notations. 
Diagrams at right are 
equivalent.

CharSource

TestCharInput

CharSource

getNextChar()
endOfSequence()

<<interface>>

TestCharInput



© 2017, T. S. Norvell, A. Vardy 29 / 34

 

Generalization/Specialization and 
Realization in Java
UML terminology Java terminology

C specializes D C extends D

C realizes D C implements D

class TestCharInput
   extends TestInput
   implements CharSource
{
   …
} CharSource

<<interface>>

TestCharInput

TestInput



© 2017, T. S. Norvell, A. Vardy 30 / 34

 

Abstract operations

 An operation O is “abstract” in class C if it does not 
have an implementation in class C.

 The implementation of the operation will be filled in 
in specializations of C.

 abstract class TreeNode {
abstract int height() ; … }

class Leaf extends TreeNode {
int height() { return 1 ; } … }

class Branch extends TreeNode {
int height(){return 1 + Math.max( l.height(), 

                              r.height() ; } … }



© 2017, T. S. Norvell, A. Vardy 31 / 34

 

Abstract in Visual Paradigm (VP)

 In VP classes are made 
abstract with a 
checkbox in the 
specification.

 Likewise for operations 
(class must be abstract 
first).

 Italics indicate 
abstractness

Leaf

height() : int

Branch

height() : int

TreeNode

height() : int
11 left

1

right



© 2017, T. S. Norvell, A. Vardy 32 / 34

 

Abstract and Concrete classes

 Classes that have abstract operations can not be 
instantiated --- since this would mean that there is 
no implementation associated with one of the 
object’s operations

 Classes that can not be instantiated are called 
abstract classes.

 Classes that can be are called concrete
 In UML use the <<abstract>> stereotype for abstract 

classes and operations.
 Alternatively: The name of the abstract class or operation is 

in italics.



© 2017, T. S. Norvell, A. Vardy 33 / 34

 

Dependence

Dependence is the weakest form of relationship

A class C depends on class D if the 
implementation or interface of C even 
mentions D

For example if C has an operation that has a
– parameter
– local variable
– return type

of type D



© 2017, T. S. Norvell, A. Vardy 34 / 34

 

Dependence

 Dependence relations are important to note 
because unneeded dependence makes 
components... 
 harder to reuse in another context
 harder to isolate for testing
 harder to write/understand/maintain, as the 

depended on classes must also be understood
 It is better to depend on an interface than on 

a class.
 More on this later...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

