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UML

 Unified Modelling Language (UML)
 UML is a graphical modelling Language

 graphical --- UML documents are diagrams
 modelling --- UML is for describing systems
 systems --- may be software systems or domains 

(e.g. business systems), etc.

 It is semi-formal
 The UML definition tries to give a reasonably well 

defined meaning to each construct
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Three Ways of Using UML
 UML as sketch

 Used to sketch out some aspects of the system
 Create diagrams only for important classes and interactions

 UML as blueprint
 Complete design for the whole system
 Interfaces for all subsystems specified (but not 

implementation!)

 UML as programming language
 Diagrams compiled directly to executable code!
 Neat idea, but not yet mainstream

 We will utilize UML as sketch in this course
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Classes

 Classes are specifications for objects
 Parts of a class:

 Name
 Set of attributes (aka data members or fields)
 Set of operations 

 Constructors: initialize the object state
 Accessors: report on the object state
 Mutators: alter the object state
 Destructors: clean up (not used in Java)
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C++ Representation of a Class
class Point {
private:
    double x, y;
public:
    /* Constructor. */
    Point(double x, double y) {
        this->x = x;
        this->y = y;
    };
    double getX() { return x; };
    void setX(double inX) { x = inX; };
    // ...
};

Attributes

Operations
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Java Representation of a Class

public class Point {
    private double x, y;

    /* Constructor. */
    public Point(double x, double y) {
        this.x = x;
        this.y = y;
    }

    public double getX() { return x; }
    public void setX(double inX) { x = inX; }
    // ...
}

Attributes

Operations
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A Student Class in Java

class Student {
private long studNum ;

private String name ;

public Student( long sn, String nm ) {

studNum = sn; name = nm; }
public String getName() { return name; }

public long getNumber() { return studNum; }

}

Name

Attributes

Operations
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UML Representation of a Class

- private

+ public

UML syntax: +/- name : type
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Classes in UML

UML can be used for many purposes.
 In software design UML classes usually 

correspond to classes in the code.
 But in domain analysis UML classes are 

typically classes of real objects (e.g. real 
students) rather than their software 
representations.
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Usage of (Software) Classes in Java

A class C can be used in 3 ways:
 Instantiation. You can use C to create new 

objects.
 Example: new C()

 Extension. You can use C as the basis for 
implementing other classes
 Example: class D extends C { … }

 Type. You can use C as a type
 Examples: C func( C p ) { C q ;… }
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Relationships Between Classes

 Association
 Aggregation
 Composition
 Dependence
 Generalization
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Association Relationships

 Association is a general purpose relationship 
between classes.

 Associations are typically named.
 Associations are often implemented with 

pointers (C++) or reference variables (Java)

Student Section
takes
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Department
Head

Department 11

DepartmentMember

1..*

11

1..*

Multiplicity Constraints

 Each Department is 
associated with one 
DepartmentHead and at 
least one 
DepartmentMember

 Each DepartmentHead 
and DepartmentMember 
is associated with one 
Department

 No constraint means 
multiplicity is unspecified
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Role names

 Role names may be 
given to the ends of an 
association

 Only name roles when 
it adds clarity

Student

Professor

Section
takes

1..*

1..*

teaches

assigned section

instructor1..*
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Navigability

 An arrow-head 
indicates the direction 
of navigability.

 E.g. Given a student 
object, we can easily 
find all Sections the 
student is taking.

 No arrow-head: means 
navigability in both 
directions. 

DepartmentHeadDepartment
1 11 1

SectionStudent
takes
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Implementing Navigable 
Associations
Usually implemented with data members

class Student {
private List<Section> sections; … }

class Department {
private DepartmentHead deptHead;  … }

DepartmentHeadDepartment
1 11 1

SectionStudent
takes

*
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Implementing Associations 
Indirectly
 An association between objects might also be 

stored outside of the objects
class Department {
private static Map<Department,DepartmentHead> 

heads = new<Department,DepartmentHead> 
HashMap();

DepartmentHead getHead() {
return heads.get(this);

}

…

}
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Aggregation

 Aggregation is a special case of association.
 It is used when there is a “whole-part” relationship 

between objects.
 Denoted with an unfilled diamond at the “whole” end
 eg. A Club is an aggregation of Persons (the 

members of the club)
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Composition

 Composition is a special case of aggregation
 Composition is appropriate when

 each part is a part of one whole
 the lifetime of the whole and the part are the same

 Denoted by a solid diamond at the “whole” end
 eg.

– A Polygon is composed of 3 or more Points
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Composition vs. Aggregation
 The difference between composition and aggregation is 

lifetime
 For example, if whenever the points that compose it are 

destroyed, the polygon is destroyed (and vice versa) then 
we have composition

 But maybe this is not what what we want.  If we allow the 
points to exist independently of the polygon, then we can 
also use them to define other shapes
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Note: Class Diagrams Show Class 
Relationships, Not Object 
Relationships
 Consider again this example:

 We're not saying that the same points (i.e. 
instances of Point) are necessarily shared 
by Polygons and Circles, but they could be
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Recursive associations

 Associations may relate 
a class to itself.

 The objects of the class 
may or may not be 
associated with 
themselves.

 (For example, the left and right 
children of a node would not 
be that node. But a 
GraphNode object might be its 
own neighbour.)

AVLTreeNode
0..10..1

-leftChild
-rightChild0..1 0..1

GraphNode

0..*0..* -neighbours

Component
(from awt)

0..*0..*
contains
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Associations vs. attributes

OR

 Both are usually implemented by variables within the class
– Fields (Java), data members (C++).

 Use association for references that point to classes or 
interfaces.

– Or use aggregation or composition if appropriate
 Use attributes for primitive types such as int, boolean, char
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Degrees of belonging

 Attribute. Lifetime of attribute equals life time 
of object that contains it.

 Aggregation. Whole-part relationship, but 
parts could be parts of several wholes, or 
could migrate from one container to another.

 Composition. Lifetime of the part equals or is, 
by design, nested within the lifetime of the 
whole.

 Association. Relationship is not part/whole.
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Generalization/Specialization
 Represents “is-a-kind-

of’’ relationships.
 E.g. every Chimp is 

also an Ape.
 In OO implementation it 

represents class 
inheritance: Inheritance 
of interface and of 
implementation too.

Primate

Ape

Chimp Person

DepartmentHead DepartmentMember
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Pausing here to introduce 
Inheritance, Abstract Classes and 
Methods, and Interfaces in Java
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Interfaces

 Interfaces are classes 
that have no associated 
implementation.

 I.e.
 no attributes,
 no implementations for 

any operations
 In UML use either 

stereotype to indicate 
an interface, or 
“lollypop”

CharSource

CharSource

getNextChar()
endOfSequence()

<<interface>>

Class 
notation

Lollypop

Stereotypes 
are given in 
angle brackets
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Realization

 Classes “specialize” 
classes, but “realize” 
interfaces. Similar 
concept, similar 
notation. (Note dashes)

 Choice of notations. 
Diagrams at right are 
equivalent.

CharSource

TestCharInput

CharSource

getNextChar()
endOfSequence()

<<interface>>

TestCharInput
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Generalization/Specialization and 
Realization in Java
UML terminology Java terminology

C specializes D C extends D

C realizes D C implements D

class TestCharInput
   extends TestInput
   implements CharSource
{
   …
} CharSource

<<interface>>

TestCharInput

TestInput
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Abstract operations

 An operation O is “abstract” in class C if it does not 
have an implementation in class C.

 The implementation of the operation will be filled in 
in specializations of C.

 abstract class TreeNode {
abstract int height() ; … }

class Leaf extends TreeNode {
int height() { return 1 ; } … }

class Branch extends TreeNode {
int height(){return 1 + Math.max( l.height(), 

                              r.height() ; } … }
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Abstract in Visual Paradigm (VP)

 In VP classes are made 
abstract with a 
checkbox in the 
specification.

 Likewise for operations 
(class must be abstract 
first).

 Italics indicate 
abstractness

Leaf

height() : int

Branch

height() : int

TreeNode

height() : int
11 left

1

right
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Abstract and Concrete classes

 Classes that have abstract operations can not be 
instantiated --- since this would mean that there is 
no implementation associated with one of the 
object’s operations

 Classes that can not be instantiated are called 
abstract classes.

 Classes that can be are called concrete
 In UML use the <<abstract>> stereotype for abstract 

classes and operations.
 Alternatively: The name of the abstract class or operation is 

in italics.
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Dependence

Dependence is the weakest form of relationship

A class C depends on class D if the 
implementation or interface of C even 
mentions D

For example if C has an operation that has a
– parameter
– local variable
– return type

of type D
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Dependence

 Dependence relations are important to note 
because unneeded dependence makes 
components... 
 harder to reuse in another context
 harder to isolate for testing
 harder to write/understand/maintain, as the 

depended on classes must also be understood
 It is better to depend on an interface than on 

a class.
 More on this later...
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