Software Failures

Figures from “Why Software Fails” by Robert N. Charette, IEEE Spectrum, 2005.

Agile Software Development

ENGI 5895: Software Design Software is ubiquitous and is constantly growing in size and
complexity:

@ http://www.informationisbeautiful.net/
Andrew Vardy visualizations/million-lines-of-code/

o o Large software projects have a high failure rate. Estimated cost for
Faculty of Engineering & Applied Science

Memorial University of Newfoundland failed software projects in the US: $60-70 Billion / year.
Software developers spend 40-50% of their time on “avoidable
March 5, 2018 rework’” as opposed to “work that’s done right the first time".

‘ The Waterfall Process ‘ Problems with the Waterfall Process

To mitigate failure, software engineers and managers establish

processes, with scheduled outputs (documents, code, test @ The waterfall process requires reports, meetings, and
results,...). The classic software development process is known as evaluations at every stage. Scheduling and executing all of this
the waterfall process: extra work is time-consuming.

@ The artefacts and constraints of this process are not sufficient
to prevent errors, so more artefacts and constraints are
imposed.

e Sounds paradoxical but this is how organizations often behave!

Implementation
@ As the development process becomes more and more
cumbersome, the schedule slips.

@ The customer may wish to modify the requirements, or it may

be realized that the original requirements were poorly specified.

o Leads to a massive cascade of changes through all subsequent

From http://en.wikipedia.org/wiki/Waterfall_process
stages of the process!

The idea is to complete each phase in sequence before moving onto
the next. Adv.: Encourages getting things right before moving on.

Andrew Vardy Agile Soft. Dev. Andrew Vardy Agile Soft. Dev.

Agile Software Development Individuals and interactions over processes and tools
Some advice from “Agile Software Development” by Robert. C. Martin (Bob)

A set of values established by a group of industry experts in 2001
to allow software teams to work quickly and respond to change: Individuals and interactions:

Manifesto for Agile Software Development A team of average programmers who communicate well

. . — are more likely to succeed than a group of superstars who
We are uncovering better ways of developing software by doing it g
. . . fail to interact as a team.
and helping others do it. Through this work we have come to value:

@ Individuals and interactions over processes and tools

Tools:
e Working software over comprehensive documentation Don'’t assume you've outgrown a tool until you've tried it
o Customer collaboration over contract negotiation and found you can't use it. [...] Before you commit to the
@ Responding to change over following a plan top-shelf behemoth database system, try flat files. Don't

assume that bigger and better tools will automatically

That is, while there is value in the items on the right, we value the help you do better. Often they hinder more than help.

items on the left more.

Andrew Vardy Agile Soft. Dev.

Customer collaboration over contract negotiation

Working software over comprehensive documentation

Huge software documents take a great deal of time to
produce and even more time to keep in sync with the
code. If they are not kept in sync, then they turn into

large, complicated lies and become a significant source Successful projects involve customer feedback on a
of misdirection. regular and frequent basis. Rather than depending on a
[] contract or a statement of work, the customer of the

software works closely with the development team,

It is always a good idea for the team to write and providing frequent feedback on their efforts.

maintain a rationale and structure document, but that
document needs to be short and salient. By “short” |
mean one or two dozen pages at most. By “salient,” |
mean it should discuss the overall design rationale, and
only the highest-level structures in the system.

Andrew Vardy Agile Soft. Dev. Andrew Vardy Agile Soft. Dev.

Responding to change over following a plan

It is tempting for novice managers to create a [...] Gantt
chart of the whole project [...] What really happens is
that the structure of the chart degrades. As the team
gains knowledge about the system, and as the customers
gain knowledge about their needs, certain tasks on the
chart become unnecessary. [...] In short, the plan
undergoes changes in shape, not just changes in dates.

A better planning strategy is to make detailed plans for
the next two weeks, very rough plans for the next three
months, and extremely crude plans beyond that.

Andrew Vardy Agile Soft. Dev.

