
Agile Software Development

ENGI 5895: Software Design

Andrew Vardy

Faculty of Engineering & Applied Science

Memorial University of Newfoundland

March 5, 2018

Andrew Vardy Agile Soft. Dev.

Software Failures

Figures from “Why Software Fails” by Robert N. Charette, IEEE Spectrum, 2005.

Software is ubiquitous and is constantly growing in size and

complexity:

http://www.informationisbeautiful.net/

visualizations/million-lines-of-code/

Large software projects have a high failure rate. Estimated cost for

failed software projects in the US: $60-70 Billion / year.

Software developers spend 40-50% of their time on “avoidable

rework” as opposed to “work that’s done right the first time”.

Andrew Vardy Agile Soft. Dev.

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Software Failures

Figures from “Why Software Fails” by Robert N. Charette, IEEE Spectrum, 2005.

Software is ubiquitous and is constantly growing in size and

complexity:

http://www.informationisbeautiful.net/

visualizations/million-lines-of-code/

Large software projects have a high failure rate. Estimated cost for

failed software projects in the US: $60-70 Billion / year.

Software developers spend 40-50% of their time on “avoidable

rework” as opposed to “work that’s done right the first time”.

Andrew Vardy Agile Soft. Dev.

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Software Failures

Figures from “Why Software Fails” by Robert N. Charette, IEEE Spectrum, 2005.

Software is ubiquitous and is constantly growing in size and

complexity:

http://www.informationisbeautiful.net/

visualizations/million-lines-of-code/

Large software projects have a high failure rate. Estimated cost for

failed software projects in the US: $60-70 Billion / year.

Software developers spend 40-50% of their time on “avoidable

rework” as opposed to “work that’s done right the first time”.

Andrew Vardy Agile Soft. Dev.

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Software Failures

Figures from “Why Software Fails” by Robert N. Charette, IEEE Spectrum, 2005.

Software is ubiquitous and is constantly growing in size and

complexity:

http://www.informationisbeautiful.net/

visualizations/million-lines-of-code/

Large software projects have a high failure rate. Estimated cost for

failed software projects in the US: $60-70 Billion / year.

Software developers spend 40-50% of their time on “avoidable

rework” as opposed to “work that’s done right the first time”.

Andrew Vardy Agile Soft. Dev.

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

The Waterfall Process

To mitigate failure, software engineers and managers establish

processes, with scheduled outputs (documents, code, test

results,...). The classic software development process is known as

the waterfall process:

From http://en.wikipedia.org/wiki/Waterfall_process

The idea is to complete each phase in sequence before moving onto

the next. Adv.: Encourages getting things right before moving on.

Andrew Vardy Agile Soft. Dev.

http://en.wikipedia.org/wiki/Waterfall_process

The Waterfall Process

To mitigate failure, software engineers and managers establish

processes, with scheduled outputs (documents, code, test

results,...). The classic software development process is known as

the waterfall process:

From http://en.wikipedia.org/wiki/Waterfall_process

The idea is to complete each phase in sequence before moving onto

the next. Adv.: Encourages getting things right before moving on.

Andrew Vardy Agile Soft. Dev.

http://en.wikipedia.org/wiki/Waterfall_process

The Waterfall Process

To mitigate failure, software engineers and managers establish

processes, with scheduled outputs (documents, code, test

results,...). The classic software development process is known as

the waterfall process:

From http://en.wikipedia.org/wiki/Waterfall_process

The idea is to complete each phase in sequence before moving onto

the next. Adv.: Encourages getting things right before moving on.

Andrew Vardy Agile Soft. Dev.

http://en.wikipedia.org/wiki/Waterfall_process

Problems with the Waterfall Process

The waterfall process requires reports, meetings, and

evaluations at every stage. Scheduling and executing all of this

extra work is time-consuming.

The artefacts and constraints of this process are not sufficient

to prevent errors, so more artefacts and constraints are

imposed.

Sounds paradoxical but this is how organizations often behave!

As the development process becomes more and more

cumbersome, the schedule slips.

The customer may wish to modify the requirements, or it may

be realized that the original requirements were poorly specified.

Leads to a massive cascade of changes through all subsequent

stages of the process!

Andrew Vardy Agile Soft. Dev.

Problems with the Waterfall Process

The waterfall process requires reports, meetings, and

evaluations at every stage. Scheduling and executing all of this

extra work is time-consuming.

The artefacts and constraints of this process are not sufficient

to prevent errors, so more artefacts and constraints are

imposed.

Sounds paradoxical but this is how organizations often behave!

As the development process becomes more and more

cumbersome, the schedule slips.

The customer may wish to modify the requirements, or it may

be realized that the original requirements were poorly specified.

Leads to a massive cascade of changes through all subsequent

stages of the process!

Andrew Vardy Agile Soft. Dev.

Problems with the Waterfall Process

The waterfall process requires reports, meetings, and

evaluations at every stage. Scheduling and executing all of this

extra work is time-consuming.

The artefacts and constraints of this process are not sufficient

to prevent errors, so more artefacts and constraints are

imposed.

Sounds paradoxical but this is how organizations often behave!

As the development process becomes more and more

cumbersome, the schedule slips.

The customer may wish to modify the requirements, or it may

be realized that the original requirements were poorly specified.

Leads to a massive cascade of changes through all subsequent

stages of the process!

Andrew Vardy Agile Soft. Dev.

Problems with the Waterfall Process

The waterfall process requires reports, meetings, and

evaluations at every stage. Scheduling and executing all of this

extra work is time-consuming.

The artefacts and constraints of this process are not sufficient

to prevent errors, so more artefacts and constraints are

imposed.

Sounds paradoxical but this is how organizations often behave!

As the development process becomes more and more

cumbersome, the schedule slips.

The customer may wish to modify the requirements, or it may

be realized that the original requirements were poorly specified.

Leads to a massive cascade of changes through all subsequent

stages of the process!

Andrew Vardy Agile Soft. Dev.

Problems with the Waterfall Process

The waterfall process requires reports, meetings, and

evaluations at every stage. Scheduling and executing all of this

extra work is time-consuming.

The artefacts and constraints of this process are not sufficient

to prevent errors, so more artefacts and constraints are

imposed.

Sounds paradoxical but this is how organizations often behave!

As the development process becomes more and more

cumbersome, the schedule slips.

The customer may wish to modify the requirements, or it may

be realized that the original requirements were poorly specified.

Leads to a massive cascade of changes through all subsequent

stages of the process!

Andrew Vardy Agile Soft. Dev.

Problems with the Waterfall Process

The waterfall process requires reports, meetings, and

evaluations at every stage. Scheduling and executing all of this

extra work is time-consuming.

The artefacts and constraints of this process are not sufficient

to prevent errors, so more artefacts and constraints are

imposed.

Sounds paradoxical but this is how organizations often behave!

As the development process becomes more and more

cumbersome, the schedule slips.

The customer may wish to modify the requirements, or it may

be realized that the original requirements were poorly specified.

Leads to a massive cascade of changes through all subsequent

stages of the process!

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Agile Software Development

A set of values established by a group of industry experts in 2001

to allow software teams to work quickly and respond to change:

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it

and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the

items on the left more.

Andrew Vardy Agile Soft. Dev.

Individuals and interactions over processes and tools

Some advice from “Agile Software Development” by Robert. C. Martin (Bob)

Individuals and interactions:

A team of average programmers who communicate well
are more likely to succeed than a group of superstars who
fail to interact as a team.

Tools:

Don’t assume you’ve outgrown a tool until you’ve tried it
and found you can’t use it. [...] Before you commit to the
top-shelf behemoth database system, try flat files. Don’t
assume that bigger and better tools will automatically
help you do better. Often they hinder more than help.

Individuals and interactions over processes and tools

Some advice from “Agile Software Development” by Robert. C. Martin (Bob)

Individuals and interactions:

A team of average programmers who communicate well
are more likely to succeed than a group of superstars who
fail to interact as a team.

Tools:

Don’t assume you’ve outgrown a tool until you’ve tried it
and found you can’t use it. [...] Before you commit to the
top-shelf behemoth database system, try flat files. Don’t
assume that bigger and better tools will automatically
help you do better. Often they hinder more than help.

Working software over comprehensive documentation

Huge software documents take a great deal of time to
produce and even more time to keep in sync with the
code. If they are not kept in sync, then they turn into
large, complicated lies and become a significant source
of misdirection.
[...]

It is always a good idea for the team to write and
maintain a rationale and structure document, but that
document needs to be short and salient. By “short” I
mean one or two dozen pages at most. By “salient,” I
mean it should discuss the overall design rationale, and
only the highest-level structures in the system.

Andrew Vardy Agile Soft. Dev.

Working software over comprehensive documentation

Huge software documents take a great deal of time to
produce and even more time to keep in sync with the
code. If they are not kept in sync, then they turn into
large, complicated lies and become a significant source
of misdirection.
[...]

It is always a good idea for the team to write and
maintain a rationale and structure document, but that
document needs to be short and salient. By “short” I
mean one or two dozen pages at most. By “salient,” I
mean it should discuss the overall design rationale, and
only the highest-level structures in the system.

Andrew Vardy Agile Soft. Dev.

Customer collaboration over contract negotiation

Successful projects involve customer feedback on a
regular and frequent basis. Rather than depending on a
contract or a statement of work, the customer of the
software works closely with the development team,
providing frequent feedback on their efforts.

Andrew Vardy Agile Soft. Dev.

Responding to change over following a plan

It is tempting for novice managers to create a [...] Gantt
chart of the whole project [...] What really happens is
that the structure of the chart degrades. As the team
gains knowledge about the system, and as the customers
gain knowledge about their needs, certain tasks on the
chart become unnecessary. [...] In short, the plan
undergoes changes in shape, not just changes in dates.

A better planning strategy is to make detailed plans for
the next two weeks, very rough plans for the next three
months, and extremely crude plans beyond that.

Andrew Vardy Agile Soft. Dev.

Responding to change over following a plan

It is tempting for novice managers to create a [...] Gantt
chart of the whole project [...] What really happens is
that the structure of the chart degrades. As the team
gains knowledge about the system, and as the customers
gain knowledge about their needs, certain tasks on the
chart become unnecessary. [...] In short, the plan
undergoes changes in shape, not just changes in dates.

A better planning strategy is to make detailed plans for
the next two weeks, very rough plans for the next three
months, and extremely crude plans beyond that.

Andrew Vardy Agile Soft. Dev.

