Graphics with libGDX

Dr. Andrew Vardy
Adapted from the following sources:
libGDX slides by Jussi Pohjolainen (Tampere Unversity of Applied Sciences)
transformation slides by Dr. Paul Gillard (Memorial University)

ENGI 5895
Software Design
Memorial University

Introduction

* The goal here is to illustrate some concepts in computer graphics

* The tool we will use is libGDX, a cross-platform game development
environment
* libGDXlibrary provides six interfaces to abstract away platform details
e Application, Files, Input, Net, Audio, Graphics
* The graphics library wraps OpenGL ES or WebGL
* OpenGL hasemerged as a standard library for graphics; ES = Embedded Systems

* OpenGLES available on Android and iOS
* WebGL is a Javascript APl that conforms to OpenGL ES

Cross-platform

* libGDX targets Desktop, Android, HTMLS5, and iOS
e Desktop via LWJGL (Lightweight Java Game Library)
* Androidvia Android SDK
« HTML5 via GWT (Google Web Toolkit)

* Java ->Javascript

e iOSviaRoboVM

* Java -> Objective-C

* For an alternate intro to libGDX try “2D Game Development with
libGDX” from Udacity

interface Application

* According to the libGDX API:

“An Application is the main entry point of your project. It sets up a window
and rendering surface and manages the different aspects of your application,
namely Graphics, Audio, Input and Files. Think of an Application being
equivalent to Swing's JFrame or Android's Activity.”

* Applicationis an interface which is implemented by one of the following:

 JglfwApplication (Desktop)

* AndroidApplication (Android)
 GwtApplication (HTMLS5)

* |OSApplication (iOS)

* The Application interface and the corresponding XXXApplication (e.g.
AndroidApplication) classes exist and don’t need to be modified

* Create your own app by implementing ApplicationListener

<<Interface>>

Application <<Interface>>

ApplicationListener
+ LOG_DEBUG: int

+ LOG_ERROR: int

+ LOG_INFO: int

+ LOG_NONE: int > + create()
+ dispose()

+ addLifecycleListener(..) + pause()

+ removelifecycleListener(..) + render()

+ debug + resize(int width, int height)
+ resume()

; exit()

<<Interface>>
ApplicationListener

S+ create()

+ dispose()

+ pause()

+ render()

+ resize(int width, int height)
+ resume()

create()
Called when the App1ication is first created.

dispose()
Called when the App1ication is destroyed.

pause()
Called when the App1ication is paused, usually when it's not
active or visible on screen.

render()
Called when the App1ication should render itself.

resize(int width, int height)
Called when the App1ication is resized.

resume()

Called when the Application is resumed from a paused state,
usually when it regains focus.

App Lifecycle

(Application start)

create()

resize()

render()

pause()

l

dispose()

(Application stop)

I

resume()

___________ [

! Re-gained focus

Android, lost focus
(incoming call or Home
button)

.......................

<<Interface>>
Application

+ LOG_DEBUG: int
+ LOG_ERROR: int
+ LOG_INFO: int

+ LOG_NONE:int

+ addLifecycleListener(..)
+ removeLifecycleListener(..)
+ debug

+ exit)

’—L

<<Interface>>
ApplicationListener

AndroidApplication

+ create()
+ dispose()
+ pause()
+ render()
+ resize(int width, int height)
+ resume()
TR

LwjglApplication

N\

MyGame

+ create()

+ dispose()

+ pause()

+ render()

+ resize(int width, int heigth)
+ resume()

This is what you
have to implement
to make your own

game/app

Listeners and Adapters (Java Concept)

e Usually a “Listener” in Java responds to events
e e.g. in Swing interface Mouselistener defines the following methods:

mouseClicked, mouseEntered, mouseExited, mousePressed, mouseReleased

e This is really just another flavour of the Observer pattern

* But what if you only care about “mouseClicked” events? Your concrete
Listener has to define all 5 of the methods above

* To avoid this the abstract class MouseAdapter is defined which provides
empty methods for all of these

 Now your concrete Listener can extend MouseAdapter instead of
implementing Mouselistener and you define only the methods you want

<<Interface>>
Application

+ LOG_DEBUG: int
+ LOG_ERROR: int
+ LOG_INFO: int

+ LOG_NONE:int

+ addLifecycleListener(..)
+ removelLifecycleListener(..)
+ debug

+ exit)

._.s

<<lInterface>>
ApplicationListener

AndroidApplication %
1
gt

+ create()
+ dispose()
+ pause()
+ render()
+ resize(int width, int height)
+ resume()
JAR

LwjglApplication

S

ApplicationAdapter

+ create()

+ dispose()

+ pause()

+ render()

+ resize(int width, int heigth)
+ resume()

i

MyGame

+ create()

+ render()

About Starter Classes

e For each platform (iOS, Android, Desktop ..) a
starter class must be written

e Starter classes are platform dependent
* We will focus on

— Desktop (LWIGL)
— Android

Starter Classes: Desktop

// This is platform specific: Java SE
public class DesktopStarter {
public static void main(String[] argv) {
LwjglApplicationConfiguration config
= new LwjglApplicationConfiguration();

config.title = “.";
config.width = 480;
config.heigth = 320;
new LwjglApplication(new MyGame(), config);

Starter Classes: Android

import android.os.Bundle;
import com.badlogic.gdx.backends.android.AndroidApplication;
import com.badlogic.gdx.backends.android.AndroidApplicationConfiguration;

// This is platform specific: Android
// No main
public class AndroidLauncher extends AndroidApplication {
@override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
AndroidApplicationConfiguration config = new AndroidApplicationConfiguration();
MyGame game = new MyGame();

initialize(game, config);

if(this.getApplicationListener() == game) {
this.log("test", "success");

Android Manifest

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.mygdx.game.android"
android:versionCode="1"

android:versionName="1.0" >
<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="20" />

<application
android:allowBackup="true"
android:icon="@drawable/ic_ launcher"
android:label="@string/app_name"
android:theme="@style/GdxTheme" >
<activity
android:name="com.mygdx.game.android.AndroidLauncher"
android:label="@string/app_ name"
android:screenOrientation="1landscape"
android:configChanges="keyboard|keyboardHidden|orientation|screenSize">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

Android Permissions

* Add permissions if your android app requires
certain functionality

— <uses-permission android:name="android.permission.RECORD_AUDIOQ"/>

— <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

— <uses-permission android:name="android.permission.VIBRATE"/>

e Add these to manifest file

* See

— http://developer.android.com/guide/topics/
manifest/manifest-intro.html#perms

Project Setup

e Rather than craft your own Starter Classes, | recommend using the
project generator (gdx-setup.jar) referred to here:

* https://sithub.com/libgdx/libgdx/wiki/Project-Setup-Gradle

* Torun on the desktop:
* Click Run -> “Edit Configurations...”
Click”+” in upper-left corner

Select “Gradle” (the build system)

* Change “Name” to Desktop
* Set “Tasks” to desktop:run

With “Desktop” selected, hit the play button
If everything works, this should appear:

* The following class will be defined in core/src/com.mygdx.game

public class MyGdxGame extends ApplicationAdapter {

}

SpriteBatch batch;
Texture img;

@Override
public void create () {
batch = new SpriteBatch();

img = new Texture("badlogic.jpg"); Located in android/assets (other platforms link to this dir)

}

@Override

public void render () {
Gdx.gl.glClearColor(1,0, 0, 1); Two lines of actual OpenGL;
Gdx.gl.gIClear(GL20.GL_COLOR_BUFFER _BIT); Colour specified as red, green, blue, alpha (opacity)
batch.begin();

batch.draw(img, 0, 0); Entities (here an image) drawn in a batch to optimize them for processing
} batch.end(); by the GPU
@Override
public void dispose () { Isn’t Java supposed to have garbage collection (GC)? Unfortunately, GC
batch.dispose(); is unpredictable and costly. If large resources (e.g. images) were subject to GC it could
} img.dispose(); cause game lag. Also, objects allocated outside the JVM (e.g. by calling C++ code) are
not GC'd.

Example: “A Simple Game”

* This example was adapted from

https://github.com/libgdx/libgdx/wiki/A-simple-game

* A simple zen-like game with no end:
e Catch raindrops with a bucket on the bottom of the screen.

* Raindrops spawn randomly at the top of the screen every second and
accelerate downwards.

 Player drags the bucket horizontally via the mouse/touch or by the keyboard
using left and right cursor keys.

package com.mygdx.game;
import /* NOT SHOWN */

public class Drop extends ApplicationAdapter {
private Texture droplmage;
private Texture bucketimage;
private SpriteBatch batch; /
private OrthographicCamera camera;
private Sprite bucket;
private Array<Sprite>raindrops;
private long lastDropTime;

// The width and height of the screen --- assumed not
// to change (otherwise define resize).
private int width, height;

Images to be loaded from files

Having a camera enables manipulating the
view independent of the world. Two choices:
- PerspectiveCamera: Distant objects will appear
smaller. Good for 3D.
- OrthographicCamera: The scene is projected
onto a plane. Good for 2D.

@Override
public void create() {

// load the images for the droplet and the bucket, 64x64 pixels each
droplmage = new Texture(Gdx.files.internal("droplet.png"));
bucketimage = new Texture(Gdx.files.internal("bucket.png"));

width = Gdx.graphics.getWidth();
height = Gdx.graphics.getHeight();

// create the camera and the SpriteBatch
camera = new OrthographicCamera();

camera.setToOrtho(false, width, height);
batch = new SpriteBatch();

// create a Sprite to logically represent the bucket
bucket = new Sprite(bucketimage);

bucket.setX(width / 2 - bucket.getWidth() / 2); // center the bucket horizontally
bucket.setY(20); // bottom left corner of the bucket is 20 pixels above the bottom screen edge

// create the raindrops array and spawn the first raindrop
raindrops = new Array<Sprite>();
spawnRaindrop();

}

This Sprite is created with new. GC
will still happen as normal and as long
as the objects created are small, there
shouldn’t be a big impact.

private void spawnRaindrop() {
Sprite raindrop = new Sprite(droplmage);
raindrop.setX(MathUtils.random(0, width-raindrop.getRegionWidth()));
raindrop.setY(height);
raindrops.add(raindrop);
lastDropTime = TimeUtils.nanoTime();

@0verride render method: part1/3

public void render() {
// clear the screen with a dark blue color. The arguments to glClearColor are the red, green blue and alpha component

// in the range [0,1] of the color to be used to clear the screen.
Gdx.gl.glClearColor(0, 0, 0.2f, 1);

Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

// tell the camera to update its matrices.

—eo Not really necessary here since the
camera.update(); <«—

camera is not changing

// tell the SpriteBatch to render in the coordinate system specified by the camera.
batch.setProjectionMatrix(camera.combined);

// begin a new batch and draw the bucket and all drops
batch.begin();

bucket.draw(batch);
for(Sprite raindrop: raindrops) {
raindrop.draw(batch);

}
batch.end();

render method: part2 /3

// process user input
if(Gdx.input.isTouched()) {
Vector3 touchPos = new Vector3();
touchPos.set(Gdx.input.getX(), Gdx.input.getY(), 0);
camera.unproject(touchPos);
bucket.setX(touchPos.x - bucket.getWidth() / 2);
}
if(Gdx.input.isKeyPressed(Keys.LEFT)) bucket.translateX(-400 * Gdx.graphics.getDeltaTime());
if(Gdx.input.isKeyPressed(Keys.RIGHT)) bucket.translateX(400 * Gdx.graphics.getDeltaTime());

// make sure the bucket stays within the screen bounds
if(bucket.getX() < 0) bucket.setX(0);
if(bucket.getX() > width - bucket.getWidth()) bucket.setX(width - bucket.getWidth());

// check if we need to create a new raindrop
if(TimeUtils.nanoTime() - lastDropTime > 1000000000) spawnRaindrop();

render method: part3 /3

// move the raindrops, remove any that are beneath the bottom edge of
// the screen or that hit the bucket.
lterator<Sprite>iter = raindrops.iterator();
while(iter.hasNext()) {
Sprite raindrop = iter.next();
raindrop.translateY(-200 * Gdx.graphics.getDeltaTime());
if(raindrop.getY() + raindrop.getHeight() < 0) iter.remove();
if(raindrop.getBoundingRectangle().overlaps(bucket.getBoundingRectangle())) {
iter.remove();

}
}

@Override
public void dispose() { What needs to be disposed of? Any classes
// dispose of all the native resources ~ t3timplementDisposable.
droplmage.dispose();
bucketimage.dispose();
batch.dispose();

}
}

Vectors and transformations

For the case of OpenGL, everything that we want to visualize
must be composed of primitives. To display anything interest-
ing we will have to take our basic primitives and transform
them to form the object of interest. Therefore, transforma-
tions are fundamental to computer graphics. We begin with
the most common transformations (translation, rotation, and

scaling) in 2-D...

Translation

If we represent the vertices of primitives as vectors, translation

is easily accomplished by vector addition.

Example: Given a triangle with a set of vertex vectors
V ={(2,2), (4,6), (6,2)} and a displacement vector T" = (1, 1)
the resultant vertex set for the triangle is V' = {(3,3), (5,7), (7,3) }

8 - 8
7 o 7
6 6 Vi=V+T
5 o 5
4 \ 4
3 3
o) 2 EEEE TR U U O S
I R et R O T LK Stk SOtE IS SO O
12345678 12345678

Before After

Scaling

The vectors can be uniformly scaled by simply multiplying each

vector by a scalar constant. Note that the full vector (from the
origin to the point) will be scaled, so the image will change in

both size and position.

Scaling by 0.5
8 S 8
7 b e 7 b
6 b i 6 b o
3l RN A5 e § b
a b a b
3 | 3
2 | X 2
b 1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Before After

A differential scaling is also possible, where x and y are multi-

plied by two different factors s, and s,,.

x/

/

Y

ST

SylY

It will be convenient to write this as a matrix multiplication.

| s 0 x
Y 0 s, Y
This can be written as
Vi=8.V

where x and y are the components of V.

For differential scaling the size, position, and shape may all
change. The following is the figure seen earlier scaled by the

matrix

1 23 45 6 7 8 1 23456 7 8
Before After

Rotation

Assume we have a vertex at (x,y) which is to be rotated coun-
terclockwise about the origin by an angle #. In polar coordi-
nates, this vertex is at (r,¢). We can express the Cartesian

coordinates in these terms:
X =1TCoSQ

Yy = rsin ¢

Now the rotation by € can be understood as an addition of

angles:

We can now make use of the following trigonometric identities:

cos(a + b) = cosacosb — sinasinb

sin(a + b) =sinacosb + cosasinb A

To obtain, £’ = x cosf — ysin 6

Yy = xsinf + ycos b

In vector form, this is written as:

/

€T cos —sind T

Y

) =

Y

sinf cos6

or V'=R(0)-V

The three types of transformations have the form:

Translation V=V +T
Scaling V=S5V
Rotation VI=R-V

The results of successive rotations and scalings can be obtained

by matrix multiplication, but translation cannot.

We may have a long sequence of transforms to apply to a vertex

V. For example,

V' = S()R()Sl(R;[SQV + To) + 717

V' = SQRosl(Rlszv + T()) + 17

The same transforms will be applied to many vertices so they
should be done quickly. Observe that the matrices can be com-

posed:
V' = My(M\V +Ty) + Th

where My = SoRpS1 and My, = R1S5. This improves effi-
ciency somewhat, but the translations prevent us from optimiz-

ing any more than this.

[f translation could be described as a matrix multiplication then

we could combine all transformations into a single matrix M,

V' = MV

Homogeneous coordinates

By using homogeneous coordinates we can use matrix multipli-

cation to implement all three basic transformations.

With homogeneous coordinates, a third coordinate is added to

a point; point (x,y) is represented as (z,y, W).

If we set W to be 1, (the point would be (z/W,y/W, 1)) then

we have homogenized the point.

Translation can now be performed with matrix multiplication.

Translation by (d, d,) would be represented as

2] [10d,]| [z
v |1 =1014d,| |y
1] _OO L] 1]

The transformation for scaling remains much the same: ...and for rotation:

-a: -sx 0 O- -a:- -]]

J1=10s 0[]y x! cos —sinf 0
y

1 0 0 1 1 y' | =|sinf cosf O

-) T _ l_ _ 0 0 1_

Successive translations, scalings, and rotations can now be im-

plemented with matrix multiplication.

Remember, though, that if the order of transtormations is changed

the result may also change. (Matrix multiplication is not com-
mutative — AB # BA, in general.)

Shearing is another common transformation. Shearing distorts

a primitive by “pushing” it in one direction, as shown:

1,1,1) 15,1,1)

%

Shearing in the ~ Shearing in the
x direction y direction

The matrix for shearing is as follows, where a, and a, are the

factors for shearing in the x and y directions, respectively.

- z - 1 a, O |] z

yi=|a 10
1 0 0 1 1

The general form for transformations derived from translation,

scaling, rotation, and shearing is:

ra -7“11 12 ta:- x|
Yy | =T T2 ty
1 _O 0 1_ _1_

where the r;; correspond to some combination of rotation, scal-

ing, and shearing, and the ¢’s correspond to translation.

The general form for transformations derived from translation,

scaling, rotation, and shearing is:

2| e] |z
Yy | =|ra T2 ty ||y
1 0 0 1 1

where the 7;; correspond to some combination of rotation, scal-

ing, and shearing, and the t’s correspond to translation.

Recall again that the order of operations is important in apply-

ing transformations.

For example, if we have a point (or vector) V' and wish to apply

translation, then scaling, then rotation, then translation again,
we would perform the operations as T (R(S(T'(V))))

Three dimensional transformations

All of the transformations we have seen have similar represen-

tations in 3 dimensions.

In fact, all operations can be combined to give a general trans-

formation of the form

' 11 T2 T13 Uz
Y’ T21 T92 T2z 1y
2 r31 T32 T33 i,
1] |0 0 0 1

—_ N e 8

Example: “Zen Garden”

* "A Simple Game”
e Rain falls randomly from the sky
» User controlsa bucket to catch raindrops

* Here we invert this setup
* User controlsa cloud in the sky, from which raindrops fall
* |f rain falls on a tree, the tree grows

* Download the code for this example (see notes page)

* The main files:
 ZenGardenGame (extends ApplicationAdapter)
* Tree (interface)
e SimpleTree (implements Tree)
* RecursiveTree (implements Tree)

* First, consider SimpleTree’s draw method...

draw method: part1 /2
public void draw(SpriteBatch batch) {

// An dffine transform is used to represent translation, rotation, and scaling operations.
Affine2 transform = new Affine2();

// Initial translation and rotation, bringing us to the base of the tree, pointed upwards.
transform.translate(baseX, baseY);

transform.rotate(90.0f);

// Store the current transform state for use below.
Affine2 savedTransform = new Affine2(transform);

drawBranch(batch, transform);

private void drawBranch(SpriteBatch batch, Affine2 transform) {
// Draw the current branch. We draw it as two halves because transformations such as
// rotation are made with respect to the lower left corner of the image.
batch.draw(stickLeft, stickLeftWidth, stickLeftHeight, transform);
transform.scale(1f, -1f);

batch.draw(stickRight, stickRightWidth, stickRightHeight, transform);
transform.scale(1f, -1f);

draw method: part2 / 2

// Translate to the first branching point
transform.translate(stickLeftWidth * 0.86f, 0);

// Draw the first branch
transform.rotate(30.0f);

transform.scale(FIRST_BRANCH_SCALE, FIRST BRANCH_SCALE);
drawBranch(batch, transform);

// Reposition to second branching point by restoring the saved transform.
transform = savedTransform;
transform.translate(stickLeftWidth * 0.55f, 0);

// Draw the second branch
transform.rotate(-30.0f);

transform.scale(SECOND_BRANCH_SCALE, SECOND_BRANCH_SCALE);
drawBranch(batch, transform);

Zen Garden

* On the previous slide we are using the SimpleTree class which draws
the basic trunk of the tree and two branches.

* RecursiveTree adds the following:
* Tree grows in response to water drops fallingon it
* Tree grows fractally by recursive branching
* When at the maximum growth level, berries emerge!

e Please see the attached code for details...

-

y

Zen Garden

