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Introduction

Spatial transforms describe coordinate frames (a.k.a reference
frames, coordinate systems, or often just frames)
We have already seen two different reference frames:

Inertial (or global) reference: Defined by origin O and axes XI

and YI

Robot reference frame: Defined w.r.t. the inertial frame by
origin P and axes XR and YR

Both were specialized to motion in the plane, we need a more
general representation for motion in 3-D

We will look at transforms in two different ways: as mappings
and as operators
We will discuss two different orientation representations:
rotation matrices and quaternions
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Notation

We use the notation from ”Introduction to Robotics: Mechanics
and Control”, 3rd Edition by John J. Craig
Point P described in frame A is denoted as follows:

AP =

2
4

px

py

pz

3
5

The A superscript appears to the left of the actual point and means
that we are describing the point with respect to A. The same point
described in frame B would be BP .
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Frame A is described by three mutually orthogonal unit vectors X̂A,
ŶA, and ẐA. The components of AP are the projections of the
vector corresponding to this point onto these axes.
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Lets now say that this point AP actually gives the origin of another
frame called B . Perhaps this frame gives the position of a robot’s
end effector.

We can describe one frame w.r.t. to another by specifying the
rotation and translation of the movement that separates them.
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Rotation

The rotation of frame B w.r.t. frame A is defined through the
mutually orthogonal unit vectors AX̂B , AŶB , and AẐB . If we stack
these three vectors as columns of a 3⇥3 matrix we get the rotation
matrix that encodes the orientation of frame B w.r.t. frame A:

A
BR =

⇥
AX̂B

AŶB
AẐB

⇤
=

2
4

r11 r12 r13
r21 r22 r23
r31 r32 r33

3
5

For justification, see Craig’s book, chapter 2. You see that the
rotation matrix is special: it has mutually orthogonal columns. It
turns out that the rows are mutually orthogonal too. Also, the
inverse of the rotation is just equal to the transpose.

A
BR =B

A R�1 =B
A RT
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Translation

We describe the translation between frames by specifying the
origin of B w.r.t. A as APBORG .

We now have everything we need to describe frame B :

{B} =
n

A
BR ,A PBORG

o
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There is usually a universal (a.k.a. global or inertial) frame that
others are defined w.r.t.. However, its often the case that we don’t
have a direct description of a frame with respect to the universal
(e.g. for frame C below).

We would like a way of mapping descriptions of points from one
frame to another.

Andrew Vardy Spatial Transforms



Mappings

A mapping is a change in our description of the same entity from
one frame to another. Lets say we know the position of a point
w.r.t. B but we want to compute it w.r.t. A. For example, we wish
to find AP below:
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If we have BP and our description of B we can get AP .

AP = A
BRBP +APBORG

Here again is this mapping:

AP = A
BRBP +APBORG

It would be convenient to combine both operations together into
one big matrix so that we can do the following:

AP = A
BTBP

We can do this by moving to homogeneous coordinates. In
homogeneous coordinates, we just augment our 3⇥1 vectors with
an additional row that is always set to 1.

This yields the equation at the top of this slide, as well as 1 = 1
(uninformative, but reassuring). We can represent other sorts of
transformations (e.g. shearing, scaling, perspective projection) by
modifying particular entries in the augmented matrix.
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2-D Example

Frame B lies at position (10, 5) w.r.t. frame A and is rotated by
30o . Given BP = [3 7 0]T find AP .
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We get the following transform matrix:

We now apply the transform (notice how the B’s ”cancel”):

AP = A
BTBP

= A
BT

2
664

3
7
0
1

3
775

=

2
664

9.098
12.562

0
1

3
775
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Transform as Operator

We have used transforms to relate the mapping of a point from one
frame to another. We can also view a transform as an operator
which translates and/or rotates points. For example, lets say we
have a point AP1 = [3 7 0]T and we wish to rotate it by 30o about
Ẑ and translate it by [10 5 0]T . Now we wish to find the
transformed point AP2, pictured below:
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This example is identical to the previous one, except that we view
this as an operator, not as a mapping. In this case, there is only
one frame, A. The transformation matrix is the same as before,
although we have no preceding super- or subscripts because the
operation takes place within the same frame.

AP2 = TAP1

= T

2
664

3
7
0
1

3
775 =

2
664

9.098
12.562

0
1

3
775
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Compound Transforms

Considering the above with CP given, we can express this point in
frames B and then A,

BP = B
CTCP

AP = A
BTBP

= A
BTB

CTCP

We can define a direct C ! A transform: A
CT = A

BTB
CT .



We can express the transform of D with respect to U in two
different ways:

U
DT = U

ATA
DT and U

DT = U
BTB

CTC
DT

The direction of the arrows indicates how existing transforms are
defined. Lets say that all transforms but B

CT are known and we
wish to solve for it.

B
CT = U

BT�1U
ATA

DTC
DT�1

Representing 3-D Orientation

Rotation matrices must be orthonormal, meaning that their rows
and columns are orthogonal unit vectors. Even further, rotation
matrices must have a determinant of +1. Cayley’s formula for
orthonormal matrices states that any such matrix can be rewritten
as follows:

R = (I �S)�1 (I +S)

where

S =

2
4

0 �sz sy
sz 0 �sx
�sy sx 0

3
5

The important point is that a rotation matrix actually has only
three free parameters. In fact any 3-D rotation can be represented
by as little as three numbers. We will look at a couple of example
representations...
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X-Y-Z Fixed Angles
We can describe the rotation of a frame B with respect to a frame
A as a sequence of rotations about X̂A, ŶA, and ẐA (other orders
beside X-Y-Z are possible). We are rotating about A which is fixed.

The rotation angles are g , b , and a . We can generate a rotation
matrix by combining all three:



Euler Angles

Euler angles are defined by rotating the ”moving” frame, B , about
its own axes. The following is for the order Z-Y-X:

We can view this as a series of rotations: A ! B 0, B 0 ! B 00, and
B 00 ! B , where B 0 and B 00 are intermediary frames.

A
BR = A

B 0RB 0
B 00RB 00

B R

From this perspective the rotation by g happens first, then b , then
a . Interestingly, this is the same order and the same angles as for
the X-Y-Z fixed angle representation—the two are equivalent!

Various Conventions

So the X-Y-Z fixed angle convention is equivalent to the
Z-Y-X Euler angle convention. There are 12 equivalent pairs
of conventions.
We also have the axis-angle representation which represents
the rotation via an equivalent axis of rotation specified by a
unit vector N̂ (2 free parameters) and an angle q .
Finally, the unit quaternion representation (see additional
notes) is cleanly defined from the axis-angle representation:

q = cos
q
2

+ sin
q
2

N̂

Note the difference between the representation of a rotation
and a rotation operator. The only rotation operators we have
seen our rotation matrices and unit quaternions.
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