Spatial Transforms

COMP 4766/6912: Autonomous Robotics

Andrew Vardy

Department of Computer Science Memorial University of Newfoundland

June 4, 2018

Introduction

- Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just frames)
- We have already seen two different reference frames:
 - Inertial (or global) reference: Defined by origin O and axes X_I and Y_I
 - Robot reference frame: Defined w.r.t. the inertial frame by origin P and axes X_R and Y_R
 - Both were specialized to motion in the plane, we need a more general representation for motion in 3-D
- We will look at transforms in two different ways: as mappings and as operators
- We will discuss two different orientation representations: rotation matrices and quaternions

Notation

We use the notation from "Introduction to Robotics: Mechanics and Control", 3rd Edition by John J. Craig Point *P* described in frame *A* is denoted as follows:

$${}^{A}P = \left[\begin{array}{c} p_{X} \\ p_{y} \\ p_{z} \end{array} \right]$$

The A superscript appears to the left of the actual point and means that we are describing the point with respect to A. The same point described in frame B would be BP .

Frame A is described by three mutually orthogonal unit vectors \hat{X}_A , \hat{Y}_A , and \hat{Z}_A . The components of AP are the projections of the vector corresponding to this point onto these axes.

Lets now say that this point ^{A}P actually gives the origin of another frame called B. Perhaps this frame gives the position of a robot's end effector.

We can describe one frame w.r.t. to another by specifying the **rotation** and **translation** of the movement that separates them.

Rotation

The **rotation** of frame B w.r.t. frame A is defined through the mutually orthogonal unit vectors ${}^{A}\hat{X}_{B}$, ${}^{A}\hat{Y}_{B}$, and ${}^{A}\hat{Z}_{B}$. If we stack these three vectors as columns of a 3×3 matrix we get the rotation matrix that encodes the orientation of frame B w.r.t. frame A:

$${}_{B}^{A}R = \left[{}^{A}\hat{X}_{B} {}^{A}\hat{Y}_{B} {}^{A}\hat{Z}_{B} \right] = \left[{}^{r_{11}} {}^{r_{12}} {}^{r_{13}} \right]$$

For justification, see Craig's book, chapter 2. You see that the rotation matrix is special: it has mutually orthogonal columns. It turns out that the rows are mutually orthogonal too. Also, the inverse of the rotation is just equal to the transpose.

$${}_{B}^{A}R = {}_{A}^{B}R^{-1} = {}_{A}^{B}R^{T}$$

Translation

We describe the **translation** between frames by specifying the origin of B w.r.t. A as ${}^AP_{BORG}$.

We now have everything we need to describe frame *B*:

$$\{B\} = \left\{ {}_{B}^{A}R, {}^{A}P_{BORG} \right\}$$

There is usually a universal (a.k.a. global or inertial) frame that others are defined w.r.t.. However, its often the case that we don't have a direct description of a frame with respect to the universal (e.g. for frame C below).

We would like a way of mapping descriptions of points from one frame to another.

Mappings

A mapping is a change in our description of the same entity from one frame to another. Lets say we know the position of a point w.r.t. B but we want to compute it w.r.t. A. For example, we wish to find ${}^{A}P$ below:

If we have BP and our description of B we can get AP .

$$^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG}$$

Here again is this mapping:

$${}^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG}$$

It would be convenient to combine both operations together into one big matrix so that we can do the following:

$$^{A}P = {}^{A}_{B}T^{B}P$$

We can do this by moving to **homogeneous coordinates**. In homogeneous coordinates, we just augment our 3×1 vectors with an additional row that is always set to 1.

$$\begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}R & {}^{A}P_{BORG} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{B}P \\ 1 \end{bmatrix}$$

This yields the equation at the top of this slide, as well as 1=1 (uninformative, but reassuring). We can represent other sorts of transformations (e.g. shearing, scaling, perspective projection) by modifying particular entries in the augmented matrix.

2-D Example

Frame *B* lies at position (10, 5) w.r.t. frame *A* and is rotated by 30° . Given ${}^{B}P = [3\ 7\ 0]^{T}$ find ${}^{A}P$.

We get the following transform matrix:

$${}_{B}^{A}T = \begin{bmatrix} 0.866 & -0.500 & 0.000 & 10.0 \\ 0.500 & 0.866 & 0.000 & 5.0 \\ 0.000 & 0.000 & 1.000 & 0.0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We now apply the transform (notice how the B's "cancel"):

$${}^{A}P = {}^{A}B^{B}P$$

$$= {}^{A}B^{C}\begin{bmatrix} 3\\7\\0\\1\end{bmatrix}$$

$$= {}^{G}\begin{bmatrix} 9.098\\12.562\\0\\1\end{bmatrix}$$

Transform as Operator

We have used transforms to relate the mapping of a point from one frame to another. We can also view a transform as an **operator** which translates and/or rotates points. For example, lets say we have a point ${}^{A}P_{1} = [3\ 7\ 0]^{T}$ and we wish to rotate it by 30° about \hat{Z} and translate it by $[10\ 5\ 0]^{T}$. Now we wish to find the transformed point ${}^{A}P_{2}$, pictured below:

This example is identical to the previous one, except that we view this as an operator, not as a mapping. In this case, there is only one frame, A. The transformation matrix is the same as before, although we have no preceding super- or subscripts because the operation takes place within the same frame.

$$T = \begin{bmatrix} 0.866 & -0.500 & 0.000 & 10.0 \\ 0.500 & 0.866 & 0.000 & 5.0 \\ 0.000 & 0.000 & 1.000 & 0.0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{A}P_{2} = T^{A}P_{1}$$

$$= T\begin{bmatrix} 3 \\ 7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 9.098 \\ 12.562 \\ 0 \\ 1 \end{bmatrix}$$

Compound Transforms

Considering the above with ${}^{C}P$ given, we can express this point in frames B and then A.

$${}^{B}P = {}^{B}C + {}^{C}C + {}^{C}D + {}^{$$

We can define a direct $C \to A$ transform: ${}_C^A T = ({}_B^A T) ({}_C^B T)$.

We can express the transform of ${\cal D}$ with respect to ${\cal U}$ in two different ways:

$$_{D}^{U}T = \begin{pmatrix} _{A}^{U}T \end{pmatrix} \begin{pmatrix} _{A}^{A}T \end{pmatrix}$$
 and $_{D}^{U}T = \begin{pmatrix} _{B}^{U}T \end{pmatrix} \begin{pmatrix} _{C}^{B}T \end{pmatrix} \begin{pmatrix} _{C}^{C}T \end{pmatrix}$

The direction of the arrows indicates how existing transforms are defined. Lets say that all transforms but ${}^B_C T$ are known and we wish to solve for it.

Representing 3-D Orientation

Rotation matrices must be orthonormal, meaning that their rows and columns are orthogonal unit vectors. Even further, rotation matrices must have a determinant of +1. Cayley's formula for orthonormal matrices states that any such matrix can be rewritten as follows:

$$R = (I - S)^{-1}(I + S)$$

where

$$S = \begin{bmatrix} 0 & -s_z & s_y \\ s_z & 0 & -s_x \\ -s_y & s_x & 0 \end{bmatrix}$$

The important point is that a rotation matrix actually has only three free parameters. In fact any 3-D rotation can be represented by as little as three numbers. We will look at a couple of example representations...

X-Y-Z Fixed Angles

We can describe the rotation of a frame B with respect to a frame A as a sequence of rotations about \hat{X}_A , \hat{Y}_A , and \hat{Z}_A (other orders beside X-Y-Z are possible). We are rotating about A which is fixed.

The rotation angles are γ , β , and α . We can generate a rotation matrix by combining all three:

$$\begin{split} & \stackrel{A}{{}_{B}}R_{XYZ}(\gamma,\beta,\alpha) = R_{Z}(\alpha)R_{Y}(\beta)R_{X}(\gamma) \\ & = \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix} \end{aligned}$$

Euler Angles

Euler angles are defined by rotating the "moving" frame, B, about its own axes. The following is for the order Z-Y-X:

We can view this as a series of rotations: $A \to B'$, $B' \to B''$, and $B'' \to B$, where B' and B'' are intermediary frames.

$${}_{B}^{A}R = \begin{pmatrix} A \\ B' \end{pmatrix} \begin{pmatrix} B' \\ B'' \end{pmatrix} \begin{pmatrix} B'' \\ B'' \end{pmatrix}$$

From this perspective the rotation by γ happens first, then β , then α . Interestingly, this is the same order and the same angles as for the X-Y-Z fixed angle representation—the two are equivalent!

Various Conventions

- So the X-Y-Z fixed angle convention is equivalent to the Z-Y-X Euler angle convention. There are 6 equivalent pairs of conventions.
- These different conventions were popular in the past but they all have an issue:
 - Gimbal lock: In certain configurations one of the three degrees-of-freedom is lost. e.g. in a plane pitched upwards, the roll and yaw rotations yield the same motion.
- Unit quaternions have emerged as another way of representing rotation:
 - They do not exhibit gimbal lock
 - They are more efficient computationally

Unit Quaternions and the Axis-Angle Representation

- SEE SEPARATE NOTES ON QUATERNIONS
- Note that the relationship between rotation and unit quaternions comes through the axis-angle representation of rotation:
 - The rotation is represented via a single axis of rotation specified by a unit vector \hat{N} (2 free parameters) and an angle θ .
- Unit quaternions are related to these quantities as follows:

$$q = \cos\frac{\theta}{2} + \sin\frac{\theta}{2}\hat{N}$$