Spatial Transforms
COMP 4766/6912: Autonomous Robotics

Andrew Vardy

Department of Computer Science
Memorial University of Newfoundland

June 4, 2018
Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just *frames*)
Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just *frames*)

We have already seen two different reference frames:

- Inertial (or global) reference: Defined by origin O and axes X_I and Y_I
- Robot reference frame: Defined w.r.t. the inertial frame by origin P and axes X_R and Y_R

Both were specialized to motion in the plane, we need a more general representation for motion in 3-D.

We will look at transforms in two different ways: as mappings and as operators.

We will discuss two different orientation representations: rotation matrices and quaternions.
Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just *frames*)

We have already seen two different reference frames:

- Inertial (or global) reference: Defined by origin O and axes X_I and Y_I
Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just frames)

We have already seen two different reference frames:

- Inertial (or global) reference: Defined by origin O and axes X_I and Y_I
- Robot reference frame: Defined w.r.t. the inertial frame by origin P and axes X_R and Y_R
Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just frames)

We have already seen two different reference frames:

- Inertial (or global) reference: Defined by origin O and axes X_I and Y_I
- Robot reference frame: Defined w.r.t. the inertial frame by origin P and axes X_R and Y_R

Both were specialized to motion in the plane, we need a more general representation for motion in 3-D
Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just frames)

We have already seen two different reference frames:

- Inertial (or global) reference: Defined by origin \(O \) and axes \(X_I \) and \(Y_I \)
- Robot reference frame: Defined w.r.t. the inertial frame by origin \(P \) and axes \(X_R \) and \(Y_R \)

Both were specialized to motion in the plane, we need a more general representation for motion in 3-D

We will look at transforms in two different ways: as mappings and as operators
Spatial transforms describe coordinate frames (a.k.a reference frames, coordinate systems, or often just *frames*)

We have already seen two different reference frames:

- Inertial (or global) reference: Defined by origin O and axes X_I and Y_I
- Robot reference frame: Defined w.r.t. the inertial frame by origin P and axes X_R and Y_R

Both were specialized to motion in the plane, we need a more general representation for motion in 3-D

We will look at transforms in two different ways: as mappings and as operators

We will discuss two different orientation representations: rotation matrices and quaternions
We use the notation from "Introduction to Robotics: Mechanics and Control", 3rd Edition by John J. Craig.
We use the notation from "Introduction to Robotics: Mechanics and Control", 3rd Edition by John J. Craig
Point P described in frame A is denoted as follows:

$$A P = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$
We use the notation from "Introduction to Robotics: Mechanics and Control", 3rd Edition by John J. Craig
Point P described in frame A is denoted as follows:

$$A P = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}$$

The A superscript appears to the left of the actual point and means that we are describing the point with respect to A. The same point described in frame B would be $B P$.
Frame A is described by three mutually orthogonal unit vectors \hat{X}_A, \hat{Y}_A, and \hat{Z}_A. The components of AP are the projections of the vector corresponding to this point onto these axes.
Frame A is described by three mutually orthogonal unit vectors \hat{X}_A, \hat{Y}_A, and \hat{Z}_A. The components of AP are the projections of the vector corresponding to this point onto these axes.
Lets now say that this point $^A P$ actually gives the origin of another frame called B. Perhaps this frame gives the position of a robot’s end effector.
Let's now say that this point $A P$ actually gives the origin of another frame called B. Perhaps this frame gives the position of a robot's end effector.
Let's now say that this point A^P actually gives the origin of another frame called B. Perhaps this frame gives the position of a robot's end effector.

We can describe one frame w.r.t. to another by specifying the rotation and translation of the movement that separates them.
The rotation of frame \(B \) w.r.t. frame \(A \) is defined through the mutually orthogonal unit vectors \(A\hat{X}_B \), \(A\hat{Y}_B \), and \(A\hat{Z}_B \). If we stack these three vectors as columns of a \(3 \times 3 \) matrix we get the rotation matrix that encodes the orientation of frame \(B \) w.r.t. frame \(A \):

\[
A_B R = \begin{bmatrix}
 r_{11} & r_{12} & r_{13} \\
 r_{21} & r_{22} & r_{23} \\
 r_{31} & r_{32} & r_{33}
\end{bmatrix}
\]

For justification, see Craig's book, chapter 2. You see that the rotation matrix is special: it has mutually orthogonal columns. It turns out that the rows are mutually orthogonal too. Also, the inverse of the rotation is just equal to the transpose:

\[A_B R = B_A R = A_B R^T\]
The **rotation** of frame B w.r.t. frame A is defined through the mutually orthogonal unit vectors $^A\hat{X}_B$, $^A\hat{Y}_B$, and $^A\hat{Z}_B$. If we stack these three vectors as columns of a 3×3 matrix we get the rotation matrix that encodes the orientation of frame B w.r.t. frame A:

$$^A_B R = \begin{bmatrix} ^A\hat{X}_B & ^A\hat{Y}_B & ^A\hat{Z}_B \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

For justification, see Craig's book, chapter 2. You see that the rotation matrix is special: it has mutually orthogonal columns. It turns out that the rows are mutually orthogonal too. Also, the inverse of the rotation is just equal to the transpose.

$$^B_A R = ^B_A R^{-1} = ^B_A R^T$$
The rotation of frame B w.r.t. frame A is defined through the mutually orthogonal unit vectors $A\hat{X}_B$, $A\hat{Y}_B$, and $A\hat{Z}_B$. If we stack these three vectors as columns of a 3×3 matrix we get the rotation matrix that encodes the orientation of frame B w.r.t. frame A:

$$
\begin{align*}
A_B R &= \begin{bmatrix}
A\hat{X}_B & A\hat{Y}_B & A\hat{Z}_B
\end{bmatrix} =
\begin{bmatrix}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{bmatrix}
\end{align*}
$$

For justification, see Craig’s book, chapter 2. You see that the rotation matrix is special: it has mutually orthogonal columns. It turns out that the rows are mutually orthogonal too. Also, the inverse of the rotation is just equal to the transpose.
The rotation of frame B w.r.t. frame A is defined through the mutually orthogonal unit vectors \hat{X}_B, \hat{Y}_B, and \hat{Z}_B. If we stack these three vectors as columns of a 3×3 matrix we get the rotation matrix that encodes the orientation of frame B w.r.t. frame A:

$$A_B \mathbf{R} = \begin{bmatrix} \hat{X}_B & \hat{Y}_B & \hat{Z}_B \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

For justification, see Craig’s book, chapter 2. You see that the rotation matrix is special: it has mutually orthogonal columns. It turns out that the rows are mutually orthogonal too. Also, the inverse of the rotation is just equal to the transpose.

$$A_B \mathbf{R} = B_A \mathbf{R}^{-1} = B_A \mathbf{R}^T$$
We describe the translation between frames by specifying the origin of B w.r.t. A as AP_{BORG}.
We describe the translation between frames by specifying the origin of B w.r.t. A as $^AP_{BORG}$.
We describe the **translation** between frames by specifying the origin of B w.r.t. A as $^A P_{BORG}$.

We now have everything we need to describe frame B:
We describe the translation between frames by specifying the origin of B w.r.t. A as $^AP_{BORG}$.

We now have everything we need to describe frame B:

$$\{B\} = \left\{A_B R, A_P_{BORG}\right\}$$
There is usually a universal (a.k.a. global or inertial) frame that others are defined w.r.t.. However, it’s often the case that we don’t have a direct description of a frame with respect to the universal (e.g. for frame C below).
There is usually a universal (a.k.a. global or inertial) frame that others are defined w.r.t.. However, it's often the case that we don't have a direct description of a frame with respect to the universal (e.g. for frame C below).
There is usually a universal (a.k.a. global or inertial) frame that others are defined w.r.t.. However, it's often the case that we don't have a direct description of a frame with respect to the universal (e.g. for frame C below).

We would like a way of mapping descriptions of points from one frame to another.
A mapping is a change in our description of the same entity from one frame to another. Let's say we know the position of a point w.r.t. B but we want to compute it w.r.t. A. For example, we wish to find $^A P$ below:
A mapping is a change in our description of the same entity from one frame to another. Let's say we know the position of a point w.r.t. B but we want to compute it w.r.t. A. For example, we wish to find AP below:
If we have B and our description of B we can get A.

$A = A + A + B$
If we have $^B P$ and our description of B we can get $^A P$.
If we have $^B P$ and our description of B we can get $^A P$.

$$^A P = A^B R^B P + ^A P_{BORG}$$
Here again is this mapping:

\[\mathbf{A} \mathbf{P} \mathbf{B} \mathbf{R} \mathbf{G} \mathbf{O} \mathbf{R} \mathbf{B} \mathbf{P} \mathbf{A} \]

It would be convenient to combine both operations together into one big matrix so that we can do the following:

\[\mathbf{A} \mathbf{P} \mathbf{B} \mathbf{T} \mathbf{B} \mathbf{P} \]

We can do this by moving to homogeneous coordinates. In homogeneous coordinates, we just augment our 3×1 vector with an additional row that is always set to 1. This yields the equation at the top of this slide, as well as 1 = 1 (uninformative, but reassuring). We can represent other sorts of transformations (e.g. shearing, scaling, perspective projection) by modifying particular entries in the augmented matrix.
Here again is this mapping:

\[A_P = A_B R^B P + A_P BORG \]
Here again is this mapping:

\[A_P = \frac{A}{B} R^B P + A P_{BORG} \]

It would be convenient to combine both operations together into one big matrix so that we can do the following:
Here again is this mapping:

\[A^P = A^B R^B P + A^P B O R G \]

It would be convenient to combine both operations together into one big matrix so that we can do the following:

\[A^P = A^B T^B P \]
Here again is this mapping:

\[A^P = A_B R^B P + A^P_{BORG} \]

It would be convenient to combine both operations together into one big matrix so that we can do the following:

\[A^P = A_B T^B P \]

We can do this by moving to homogeneous coordinates. In homogeneous coordinates, we just augment our 3 × 1 vectors with an additional row that is always set to 1.
Here again is this mapping:

\[A^P = \frac{A}{B} R^B P + A^P_{BORG} \]

It would be convenient to combine both operations together into one big matrix so that we can do the following:

\[A^P = \frac{A}{B} T^B P \]

We can do this by moving to **homogeneous coordinates**. In homogeneous coordinates, we just augment our 3×1 vectors with an additional row that is always set to 1.

\[
\begin{bmatrix}
A^P \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{A}{B} R & A^P_{BORG} \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
B^P \\
1
\end{bmatrix}
\]
Here again is this mapping:

\[A^P = A^B R^B P + A^P_{BORG} \]

It would be convenient to combine both operations together into one big matrix so that we can do the following:

\[A^P = A^B T^B P \]

We can do this by moving to **homogeneous coordinates**. In homogeneous coordinates, we just augment our 3 \(\times \) 1 vectors with an additional row that is always set to 1.

\[
\begin{bmatrix}
A^P \\
1
\end{bmatrix} = \begin{bmatrix}
\frac{A^B R}{0 0 0} & \frac{A^P_{BORG}}{1} \\
0 0 0 & 1
\end{bmatrix}
\begin{bmatrix}
B^P \\
1
\end{bmatrix}
\]

This yields the equation at the top of this slide, as well as 1 = 1 (uninformative, but reassuring). We can represent other sorts of transformations (e.g. shearing, scaling, perspective projection) by modifying particular entries in the augmented matrix.
Frame B lies at position $(10, 5)$ w.r.t. frame A and is rotated by 30°. Given $^B P = [3 \ 7 \ 0]^T$ find $^A P$.
Frame B lies at position $(10, 5)$ w.r.t. frame A and is rotated by 30°. Given $B P = [3 \ 7 \ 0]^T$ find $A P$.
We get the following transform matrix:

\[
\begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
We get the following transform matrix:

\[
\begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

We now apply the transform (notice how the B’s ”cancel”):

\[
^A P = ^A T^B P
\]
We get the following transform matrix:

$$
\begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

We now apply the transform (notice how the B’s "cancel"):

$$
\begin{align*}
AP &= \begin{bmatrix} A \\ B \end{bmatrix} T^B P \\
&= \begin{bmatrix}
A \\
B
\end{bmatrix} T
&= \begin{bmatrix} 3 \\
7 \\
0 \\
1
\end{bmatrix}
\end{align*}
$$
We get the following transform matrix:

\[
\begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

We now apply the transform (notice how the B’s ”cancel”):

\[
\begin{align*}
A_P &= A_B T^B P \\
&= A_B T \\
&= \begin{bmatrix} 3 \\ 7 \\ 0 \\ 1 \end{bmatrix} \\
&= \begin{bmatrix} 9.098 \\ 12.562 \\ 0 \\ 1 \end{bmatrix}
\end{align*}
\]
We have used transforms to relate the mapping of a point from one frame to another. We can also view a transform as an operator which translates and/or rotates points. For example, let's say we have a point $A P_1 = [3 7 0]^T$ and we wish to rotate it by 30° about \hat{Z} and translate it by $[10 5 0]^T$. Now we wish to find the transformed point $A P_2$, pictured below:
We have used transforms to relate the mapping of a point from one frame to another. We can also view a transform as an **operator** which translates and/or rotates points. For example, let's say we have a point $^A P_1 = [3 \ 7 \ 0]^T$ and we wish to rotate it by 30° about \hat{Z} and translate it by $[10 \ 5 \ 0]^T$. Now we wish to find the transformed point $^A P_2$, pictured below:
This example is identical to the previous one, except that we view this as an operator, not as a mapping. In this case, there is only one frame, A. The transformation matrix is the same as before, although we have no preceding super- or subscripts because the operation takes place within the same frame.
This example is identical to the previous one, except that we view this as an operator, not as a mapping. In this case, there is only one frame, A. The transformation matrix is the same as before, although we have no preceding super- or subscripts because the operation takes place within the same frame.

$$T = \begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$
This example is identical to the previous one, except that we view this as an operator, not as a mapping. In this case, there is only one frame, A. The transformation matrix is the same as before, although we have no preceding super- or subscripts because the operation takes place within the same frame.

$$T = \begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$A P_2 = T^A P_1$$
This example is identical to the previous one, except that we view this as an operator, not as a mapping. In this case, there is only one frame, A. The transformation matrix is the same as before, although we have no preceding super- or subscripts because the operation takes place within the same frame.

\[
T = \begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
^A P_2 = T^A P_1 \\
= \begin{bmatrix}
3 \\
7 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
2.66667 \\
6.5625 \\
6.9375 \\
1.00000
\end{bmatrix}
\]
This example is identical to the previous one, except that we view this as an operator, not as a mapping. In this case, there is only one frame, A. The transformation matrix is the same as before, although we have no preceding super- or subscripts because the operation takes place within the same frame.

\[
T = \begin{bmatrix}
0.866 & -0.500 & 0.000 & 10.0 \\
0.500 & 0.866 & 0.000 & 5.0 \\
0.000 & 0.000 & 1.000 & 0.0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
A^P_2 = T^A P_1 \\
= T \begin{bmatrix}
3 \\
7 \\
0 \\
1
\end{bmatrix} = \begin{bmatrix}
9.098 \\
12.562 \\
0 \\
1
\end{bmatrix}
\]
Considering the above with \(C_P \) given, we can express this point in frames \(B \) and then \(A \),

\[
B_P = \begin{pmatrix} B_C T \end{pmatrix} C_P
\]
Considering the above with $^C P$ given, we can express this point in frames B and then A,

\[
^B P = \left(^B C T \right)^C P \\
^A P = \left(^A B T \right)^B P
\]
Considering the above with C_P given, we can express this point in frames B and then A,

$$B_P = \left(B_C T \right)^C_P$$

$$A_P = \left(A_B T \right)^B_P$$

$$= \left(A_B T \right) \left(B_C T \right)^C_P$$
Considering the above with $^C P$ given, we can express this point in frames B and then A,

$$
^B P = \left(^B C T \right) ^C P
$$

$$
^A P = \left(^A B T \right) ^B P
$$

$$
= \left(^A B T \right) \left(^B C T \right) ^C P
$$

We can define a direct $C \rightarrow A$ transform: $^A C T = \left(^A B T \right) \left(^B C T \right)$.
We can express the transform of D with respect to U in two different ways: $U D T = \downarrow U A T \downarrow A D T \downarrow$ and $U D T = \downarrow U B T \downarrow B C T \downarrow C D T \downarrow$.
We can express the transform of D with respect to U in two different ways:

$$U_D T = \left(U_A T\right) \left(A_D T\right)$$
We can express the transform of D with respect to U in two different ways:

$$U_D T = \left(U_A T \right) \left(A_D T \right) \quad \text{and} \quad U_D T = \left(U_B T \right) \left(B_C T \right) \left(C_D T \right)$$
The direction of the arrows indicates how existing transforms are defined. Let's say that all transforms but $^{B}_{C} T$ are known and we wish to solve for it.
The direction of the arrows indicates how existing transforms are defined. Let's say that all transforms but $B_C T$ are known and we wish to solve for it.

\[B_C T = \left(U_B T \right)^{-1} \left(U_A T \right) \left(A_D T \right) \left(C_D T \right)^{-1} \]
Representing 3-D Orientation

Rotation matrices must be orthonormal, meaning that their rows and columns are orthogonal unit vectors. Even further, rotation matrices must have a determinant of +1. Cayley’s formula for orthonormal matrices states that any such matrix can be rewritten as follows:

\[R = (I - S) \frac{1}{\det(I + S)} \]

where

\[S = \begin{pmatrix} 0 & -s_z & s_y \\ s_z & 0 & -s_x \\ -s_y & s_x & 0 \end{pmatrix} \]

The important point is that a rotation matrix actually has only three free parameters. In fact any 3-D rotation can be represented by as little as three numbers. We will look at a couple of example representations...
Rotation matrices must be orthonormal, meaning that their rows and columns are orthogonal unit vectors. Even further, rotation matrices must have a determinant of +1. Cayley’s formula for orthonormal matrices states that any such matrix can be rewritten as follows:

\[R = (I - S)^{-1}(I + S) \]

where

\[S = \begin{bmatrix} 0 & -s_z & s_y \\ s_z & 0 & -s_x \\ -s_y & s_x & 0 \end{bmatrix} \]
Representing 3-D Orientation

Rotation matrices must be orthonormal, meaning that their rows and columns are orthogonal unit vectors. Even further, rotation matrices must have a determinant of +1. Cayley’s formula for orthonormal matrices states that any such matrix can be rewritten as follows:

\[R = (I - S)^{-1}(I + S) \]

where

\[
S = \begin{bmatrix}
0 & -s_z & s_y \\
s_z & 0 & -s_x \\
-s_y & s_x & 0
\end{bmatrix}
\]

The important point is that a rotation matrix actually has only three free parameters. In fact any 3-D rotation can be represented by as little as three numbers. We will look at a couple of example representations...
We can describe the rotation of a frame B with respect to a frame A as a sequence of rotations about \hat{X}_A, \hat{Y}_A, and \hat{Z}_A (other orders beside X-Y-Z are possible). We are rotating about A which is fixed.
We can describe the rotation of a frame B with respect to a frame A as a sequence of rotations about \hat{X}_A, \hat{Y}_A, and \hat{Z}_A (other orders beside X-Y-Z are possible). We are rotating about A which is fixed.
We can describe the rotation of a frame B with respect to a frame A as a sequence of rotations about \hat{X}_A, \hat{Y}_A, and \hat{Z}_A (other orders beside X-Y-Z are possible). We are rotating about A which is fixed.

The rotation angles are γ, β, and α. We can generate a rotation matrix by combining all three:
We can describe the rotation of a frame B with respect to a frame A as a sequence of rotations about \hat{X}_A, \hat{Y}_A, and \hat{Z}_A (other orders beside X-Y-Z are possible). We are rotating about A which is fixed.

The rotation angles are γ, β, and α. We can generate a rotation matrix by combining all three:

\[
^{A}_{B}R_{XYZ}(\gamma, \beta, \alpha) = R_Z(\alpha)R_Y(\beta)R_X(\gamma)
\]

\[
= \begin{bmatrix}
c\alpha & -s\alpha & 0 \\
s\alpha & c\alpha & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
c\beta & 0 & s\beta \\
0 & 1 & 0 \\
-s\beta & 0 & c\beta
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
0 & c\gamma & -s\gamma \\
0 & s\gamma & c\gamma
\end{bmatrix}
\]
Euler angles are defined by rotating the "moving" frame, B, about its own axes. The following is for the order Z-Y-X:
Euler angles are defined by rotating the "moving" frame, B, about its own axes. The following is for the order Z-Y-X:

We can view this as a series of rotations: $A \rightarrow B'$, $B' \rightarrow B''$, and $B'' \rightarrow B$, where B' and B'' are intermediary frames.
Euler angles are defined by rotating the "moving" frame, B, about its own axes. The following is for the order Z-Y-X:

We can view this as a series of rotations: $A \rightarrow B'$, $B' \rightarrow B''$, and $B'' \rightarrow B$, where B' and B'' are intermediary frames.

$$A_B R = \left(A_{B'} R \right) \left(B_{B''} R \right) \left(B''_B R \right)$$
Euler angles are defined by rotating the "moving" frame, B, about its own axes. The following is for the order Z-Y-X:

We can view this as a series of rotations: $A \rightarrow B'$, $B' \rightarrow B''$, and $B'' \rightarrow B$, where B' and B'' are intermediary frames.

\[
^{A}_{B} R = \left(^{A}_{B'} R\right) \left(^{B'}_{B''} R\right) \left(^{B''}_{B} R\right)
\]

From this perspective the rotation by γ happens first, then β, then α. Interestingly, this is the same order and the same angles as for the X-Y-Z fixed angle representation—the two are equivalent!
So the X-Y-Z fixed angle convention is equivalent to the Z-Y-X Euler angle convention. There are 6 equivalent pairs of conventions.
So the X-Y-Z fixed angle convention is equivalent to the Z-Y-X Euler angle convention. There are 6 equivalent pairs of conventions.

These different conventions were popular in the past but they all have an issue:
So the X-Y-Z fixed angle convention is equivalent to the Z-Y-X Euler angle convention. There are 6 equivalent pairs of conventions.

These different conventions were popular in the past but they all have an issue:

- **Gimbal lock**: In certain configurations one of the three degrees-of-freedom is lost. e.g. in a plane pitched upwards, the roll and yaw rotations yield the same motion.
So the X-Y-Z fixed angle convention is equivalent to the Z-Y-X Euler angle convention. There are 6 equivalent pairs of conventions.

These different conventions were popular in the past but they all have an issue:

- **Gimbal lock**: In certain configurations one of the three degrees-of-freedom is lost. e.g. in a plane pitched upwards, the roll and yaw rotations yield the same motion.

- **Unit quaternions** have emerged as another way of representing rotation:
So the X-Y-Z fixed angle convention is equivalent to the Z-Y-X Euler angle convention. There are 6 equivalent pairs of conventions.

These different conventions were popular in the past but they all have an issue:

- **Gimbal lock**: In certain configurations one of the three degrees-of-freedom is lost. e.g. in a plane pitched upwards, the roll and yaw rotations yield the same motion.

- **Unit quaternions** have emerged as another way of representing rotation:
 - They do not exhibit gimbal lock
So the X-Y-Z fixed angle convention is equivalent to the Z-Y-X Euler angle convention. There are 6 equivalent pairs of conventions.

These different conventions were popular in the past but they all have an issue:

- **Gimbal lock**: In certain configurations one of the three degrees-of-freedom is lost. E.g. in a plane pitched upwards, the roll and yaw rotations yield the same motion.

- **Unit quaternions** have emerged as another way of representing rotation:
 - They do not exhibit gimbal lock
 - They are more efficient computationally
SEE SEPARATE NOTES ON QUATERNIONS

Note that the relationship between rotation and unit quaternions comes through the axis-angle representation of rotation:

- The rotation is represented via a single axis of rotation specified by a unit vector \hat{N} (2 free parameters) and an angle θ.

Unit quaternions are related to these quantities as follows:

$$q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} \hat{N}$$