Supplementary Material: The Rotation Matrix

Computer Science 4766/6912

Department of Computer Science
Memorial University of Newfoundland

May 23, 2018
Assume we have a vertex at \((x, y)\) which is to be rotated counterclockwise about the origin by an angle \(\theta\).
Assume we have a vertex at \((x, y)\) which is to be rotated counterclockwise about the origin by an angle \(\theta\).

In polar coordinates, this vertex is at \((r, \phi)\); We can express this in Cartesian coordinates:
Assume we have a vertex at \((x, y)\) which is to be rotated counterclockwise about the origin by an angle \(\theta\)

In polar coordinates, this vertex is at \((r, \phi)\); We can express this in Cartesian coordinates:
Assume we have a vertex at \((x, y)\) which is to be rotated counterclockwise about the origin by an angle \(\theta\).

In polar coordinates, this vertex is at \((r, \phi)\); We can express this in Cartesian coordinates:

\[
\begin{align*}
 x &= r \cos \phi \\
 y &= r \sin \phi
\end{align*}
\]
Assume we have a vertex at \((x, y)\) which is to be rotated counterclockwise about the origin by an angle \(\theta\).

In polar coordinates, this vertex is at \((r, \phi)\); We can express this in Cartesian coordinates:

\[
x = r \cos \phi \\
y = r \sin \phi
\]

Now the rotation by \(\theta\) can be understood as an addition of angles:
Assume we have a vertex at \((x, y)\) which is to be rotated counterclockwise about the origin by an angle \(\theta\).

In polar coordinates, this vertex is at \((r, \phi)\); We can express this in Cartesian coordinates:

\[
\begin{align*}
 x &= r \cos \phi \\
 y &= r \sin \phi
\end{align*}
\]

Now the rotation by \(\theta\) can be understood as an addition of angles:
Assume we have a vertex at \((x, y)\) which is to be rotated counterclockwise about the origin by an angle \(\theta\).

In polar coordinates, this vertex is at \((r, \phi)\); We can express this in Cartesian coordinates:

\[
\begin{align*}
x &= r \cos \phi \\
y &= r \sin \phi
\end{align*}
\]

Now the rotation by \(\theta\) can be understood as an addition of angles:
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]

We can now make use of the following trigonometric identities:

\[\cos(a + b) = \cos a \cos b - \sin a \sin b \]
\[\sin(a + b) = \sin a \cos b + \cos a \sin b \]

After a few steps (COVERED ON BOARD) we obtain,

\[x' = x \cos \theta - y \sin \theta \]
\[y' = x \sin \theta + y \cos \theta \]
The coordinates of the rotated vertex are as follows:
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]

We can now make use of the following trigonometric identities:
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]

We can now make use of the following trigonometric identities:
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]

We can now make use of the following trigonometric identities:

\[\cos(a + b) = \cos a \cos b - \sin a \sin b \]
\[\sin(a + b) = \sin a \cos b + \cos a \sin b \]
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]

We can now make use of the following trigonometric identities:

\[\cos(a + b) = \cos a \cos b - \sin a \sin b \]
\[\sin(a + b) = \sin a \cos b + \cos a \sin b \]

After a few steps (COVERED ON BOARD) we obtain,
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]

We can now make use of the following trigonometric identities:

\[\cos(a + b) = \cos a \cos b - \sin a \sin b \]
\[\sin(a + b) = \sin a \cos b + \cos a \sin b \]

After a few steps (COVERED ON BOARD) we obtain,
The coordinates of the rotated vertex are as follows:

\[x' = r \cos(\theta + \phi) \]
\[y' = r \sin(\theta + \phi) \]

We can now make use of the following trigonometric identities:

\[\cos(a + b) = \cos a \cos b - \sin a \sin b \]
\[\sin(a + b) = \sin a \cos b + \cos a \sin b \]

After a few steps (COVERED ON BOARD) we obtain,

\[x' = x \cos \theta - y \sin \theta \]
\[y' = x \sin \theta + y \cos \theta \]
In vector form, this can be written as:

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} =
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

or

\[
v' = R_{ccw}(\theta)v
\]

where \(v\) is the original vertex, \(v'\) is the rotated vertex, and \(R_{ccw}\) is the counter-clockwise (hence 'ccw') rotation matrix.

Note: If the direction of rotation is not specified, then assume counter-clockwise. In other words:

\[
R(\theta) = R_{ccw}(\theta)
\]
In vector form, this can be written as:
In vector form, this can be written as:

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
\]
In vector form, this can be written as:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

or \(\mathbf{v}' = R_{ccw}(\theta) \mathbf{v} \)
In vector form, this can be written as:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

or \(v' = R_{ccw}(\theta)v \)
In vector form, this can be written as:

\[
\begin{bmatrix}
 x' \\
y'
\end{bmatrix}
=
\begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

or \(\mathbf{v}' = R_{ccw}(\theta) \mathbf{v} \)

where \(\mathbf{v} \) is the original vertex, \(\mathbf{v}' \) is the rotated vertex, and \(R_{ccw} \) is the counter-clockwise (hence ‘ccw’) rotation matrix.
In vector form, this can be written as:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

or \(\mathbf{v}' = R_{ccw}(\theta)\mathbf{v} \)

where \(\mathbf{v} \) is the original vertex, \(\mathbf{v}' \) is the rotated vertex, and \(R_{ccw} \) is the counter-clockwise (hence ‘ccw’) rotation matrix

Note: If the direction of rotation is not specified, then assume counter-clockwise. In other words:
In vector form, this can be written as:

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

or \(v' = R_{ccw}(\theta)v \)

where \(v \) is the original vertex, \(v' \) is the rotated vertex, and \(R_{ccw} \) is the counter-clockwise (hence ‘ccw’) rotation matrix.

Note: If the direction of rotation is not specified, then assume counter-clockwise. In other words:
In vector form, this can be written as:

\[
\begin{bmatrix}
 x' \\
y'
\end{bmatrix} = \begin{bmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
 x \\
y
\end{bmatrix}
\]

or \(\mathbf{v}' = R_{ccw}(\theta) \mathbf{v} \)

where \(\mathbf{v} \) is the original vertex, \(\mathbf{v}' \) is the rotated vertex, and \(R_{ccw} \) is the counter-clockwise (hence ‘ccw’) rotation matrix.

Note: If the direction of rotation is not specified, then assume counter-clockwise. In other words:

\[R(\theta) = R_{ccw}(\theta) \]