
Planning: Part 2
Probabilistic Planning

Computer Science 4766/6912

Department of Computer Science
Memorial University of Newfoundland

July 13, 2018

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 1 / 18



Introduction

In classical approaches to robot planning there is no uncertainty.

The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Introduction

In classical approaches to robot planning there is no uncertainty. The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Introduction

In classical approaches to robot planning there is no uncertainty. The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Introduction

In classical approaches to robot planning there is no uncertainty. The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Introduction

In classical approaches to robot planning there is no uncertainty. The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Introduction

In classical approaches to robot planning there is no uncertainty. The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Introduction

In classical approaches to robot planning there is no uncertainty. The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Introduction

In classical approaches to robot planning there is no uncertainty. The
following assumptions were implicit in the classical paradigm:

The robot’s sensors reveal the structure of the world directly

The robot’s pose and the goal pose are known

The results of robot actions can be predicted

Yet it turns out that there is uncertainty in sensor values, uncertainty in
pose estimates, and uncertainty in robot actions!

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 2 / 18



Consider a classical planner taking the robot to the goal pictured below:

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The

robot starts at the center with unknown orientation. Its task is to move to the goal

location on the left.

What is shown is a control policy which maps states into actions. Here it
is assumed that these actions are deterministic (i.e. entirely predictable).
However, movement down the central may be rather risky. It would be
better if uncertainty in action could be taken into account.



Consider a classical planner taking the robot to the goal pictured below:

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The

robot starts at the center with unknown orientation. Its task is to move to the goal

location on the left.

What is shown is a control policy which maps states into actions. Here it
is assumed that these actions are deterministic (i.e. entirely predictable).
However, movement down the central may be rather risky. It would be
better if uncertainty in action could be taken into account.



Consider a classical planner taking the robot to the goal pictured below:

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The

robot starts at the center with unknown orientation. Its task is to move to the goal

location on the left.

What is shown is a control policy which maps states into actions. Here it
is assumed that these actions are deterministic (i.e. entirely predictable).
However, movement down the central may be rather risky. It would be
better if uncertainty in action could be taken into account.



Consider a classical planner taking the robot to the goal pictured below:

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The

robot starts at the center with unknown orientation. Its task is to move to the goal

location on the left.

What is shown is a control policy which maps states into actions.

Here it
is assumed that these actions are deterministic (i.e. entirely predictable).
However, movement down the central may be rather risky. It would be
better if uncertainty in action could be taken into account.



Consider a classical planner taking the robot to the goal pictured below:

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The

robot starts at the center with unknown orientation. Its task is to move to the goal

location on the left.

What is shown is a control policy which maps states into actions. Here it
is assumed that these actions are deterministic (i.e. entirely predictable).

However, movement down the central may be rather risky. It would be
better if uncertainty in action could be taken into account.



Consider a classical planner taking the robot to the goal pictured below:

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The

robot starts at the center with unknown orientation. Its task is to move to the goal

location on the left.

What is shown is a control policy which maps states into actions. Here it
is assumed that these actions are deterministic (i.e. entirely predictable).
However, movement down the central may be rather risky.

It would be
better if uncertainty in action could be taken into account.



Consider a classical planner taking the robot to the goal pictured below:

robotgoal

Figure 14.1 Near-symmetric environment with narrow and wide corridors. The

robot starts at the center with unknown orientation. Its task is to move to the goal

location on the left.

What is shown is a control policy which maps states into actions. Here it
is assumed that these actions are deterministic (i.e. entirely predictable).
However, movement down the central may be rather risky. It would be
better if uncertainty in action could be taken into account.



Markov Decision Process

A Markov Decision Process (MDP) accounts for uncertainty in a robot’s
action.

An MDP utilizes the Markov assumption, given before, that the
state vector is complete and that knowing the current action allows us to
completely determine the probability distribution of the next state.

An MDP allows for uncertainty in action, but it does assume that the
state is fully known. Uncertainty in state can be accounted for in a
Partially Observable Markov Decision Process (POMDP).

POMDP’s are important, but we will just cover MDP’s.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 4 / 18



Markov Decision Process

A Markov Decision Process (MDP) accounts for uncertainty in a robot’s
action. An MDP utilizes the Markov assumption, given before, that the
state vector is complete and that knowing the current action allows us to
completely determine the probability distribution of the next state.

An MDP allows for uncertainty in action, but it does assume that the
state is fully known. Uncertainty in state can be accounted for in a
Partially Observable Markov Decision Process (POMDP).

POMDP’s are important, but we will just cover MDP’s.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 4 / 18



Markov Decision Process

A Markov Decision Process (MDP) accounts for uncertainty in a robot’s
action. An MDP utilizes the Markov assumption, given before, that the
state vector is complete and that knowing the current action allows us to
completely determine the probability distribution of the next state.

An MDP allows for uncertainty in action, but it does assume that the
state is fully known.

Uncertainty in state can be accounted for in a
Partially Observable Markov Decision Process (POMDP).

POMDP’s are important, but we will just cover MDP’s.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 4 / 18



Markov Decision Process

A Markov Decision Process (MDP) accounts for uncertainty in a robot’s
action. An MDP utilizes the Markov assumption, given before, that the
state vector is complete and that knowing the current action allows us to
completely determine the probability distribution of the next state.

An MDP allows for uncertainty in action, but it does assume that the
state is fully known. Uncertainty in state can be accounted for in a
Partially Observable Markov Decision Process (POMDP).

POMDP’s are important, but we will just cover MDP’s.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 4 / 18



Markov Decision Process

A Markov Decision Process (MDP) accounts for uncertainty in a robot’s
action. An MDP utilizes the Markov assumption, given before, that the
state vector is complete and that knowing the current action allows us to
completely determine the probability distribution of the next state.

An MDP allows for uncertainty in action, but it does assume that the
state is fully known. Uncertainty in state can be accounted for in a
Partially Observable Markov Decision Process (POMDP).

POMDP’s are important, but we will just cover MDP’s.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 4 / 18



We will be using the MDP framework and will therefore assume that the
robot’s state (pose) is known.

This is reasonable if we assume that the
robot has already localized itself using one of the previously studied
localization techniques.

Since the robot’s actions are uncertain, it is helpful to have a complete
plan that covers the whole state space in case the robot wanders off the
ideal route. A control policy gives the right action to perform in any
state. A control policy is also known as a universal plan.



We will be using the MDP framework and will therefore assume that the
robot’s state (pose) is known. This is reasonable if we assume that the
robot has already localized itself using one of the previously studied
localization techniques.

Since the robot’s actions are uncertain, it is helpful to have a complete
plan that covers the whole state space in case the robot wanders off the
ideal route. A control policy gives the right action to perform in any
state. A control policy is also known as a universal plan.



We will be using the MDP framework and will therefore assume that the
robot’s state (pose) is known. This is reasonable if we assume that the
robot has already localized itself using one of the previously studied
localization techniques.

Since the robot’s actions are uncertain, it is helpful to have a complete
plan that covers the whole state space in case the robot wanders off the
ideal route.

A control policy gives the right action to perform in any
state. A control policy is also known as a universal plan.



We will be using the MDP framework and will therefore assume that the
robot’s state (pose) is known. This is reasonable if we assume that the
robot has already localized itself using one of the previously studied
localization techniques.

Since the robot’s actions are uncertain, it is helpful to have a complete
plan that covers the whole state space in case the robot wanders off the
ideal route. A control policy gives the right action to perform in any
state.

A control policy is also known as a universal plan.



We will be using the MDP framework and will therefore assume that the
robot’s state (pose) is known. This is reasonable if we assume that the
robot has already localized itself using one of the previously studied
localization techniques.

Since the robot’s actions are uncertain, it is helpful to have a complete
plan that covers the whole state space in case the robot wanders off the
ideal route. A control policy gives the right action to perform in any
state. A control policy is also known as a universal plan.



If we incorporate uncertainty in actions then this modifies the control
policy:

Notice that the longer path is now preferred since it reduces the risk of
running into a wall.



If we incorporate uncertainty in actions then this modifies the control
policy:

Notice that the longer path is now preferred since it reduces the risk of
running into a wall.



If we incorporate uncertainty in actions then this modifies the control
policy:

Notice that the longer path is now preferred since it reduces the risk of
running into a wall.



Value Iteration

We require an algorithm to evaluate the value of all possible states so that
we can choose the best next state from any current state (i.e. the best
movement).

The algorithm used here is known as value iteration.

We first need to define a payoff function to get the immediate expected
reward or penalty for any movement u in state x . e.g.

r(x , u) =

{
+100 if we expect u to bring us to the goal state
−1 otherwise

We get a reward of 100 for reaching the goal state and a movement
penalty of −1. We attempt to maximize the expected future payoff, which
will hopefully lead us to the goal state while minimizing future penalties.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 7 / 18



Value Iteration

We require an algorithm to evaluate the value of all possible states so that
we can choose the best next state from any current state (i.e. the best
movement). The algorithm used here is known as value iteration.

We first need to define a payoff function to get the immediate expected
reward or penalty for any movement u in state x . e.g.

r(x , u) =

{
+100 if we expect u to bring us to the goal state
−1 otherwise

We get a reward of 100 for reaching the goal state and a movement
penalty of −1. We attempt to maximize the expected future payoff, which
will hopefully lead us to the goal state while minimizing future penalties.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 7 / 18



Value Iteration

We require an algorithm to evaluate the value of all possible states so that
we can choose the best next state from any current state (i.e. the best
movement). The algorithm used here is known as value iteration.

We first need to define a payoff function to get the immediate expected
reward or penalty for any movement u in state x .

e.g.

r(x , u) =

{
+100 if we expect u to bring us to the goal state
−1 otherwise

We get a reward of 100 for reaching the goal state and a movement
penalty of −1. We attempt to maximize the expected future payoff, which
will hopefully lead us to the goal state while minimizing future penalties.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 7 / 18



Value Iteration

We require an algorithm to evaluate the value of all possible states so that
we can choose the best next state from any current state (i.e. the best
movement). The algorithm used here is known as value iteration.

We first need to define a payoff function to get the immediate expected
reward or penalty for any movement u in state x . e.g.

r(x , u) =

{
+100 if we expect u to bring us to the goal state
−1 otherwise

We get a reward of 100 for reaching the goal state and a movement
penalty of −1. We attempt to maximize the expected future payoff, which
will hopefully lead us to the goal state while minimizing future penalties.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 7 / 18



Value Iteration

We require an algorithm to evaluate the value of all possible states so that
we can choose the best next state from any current state (i.e. the best
movement). The algorithm used here is known as value iteration.

We first need to define a payoff function to get the immediate expected
reward or penalty for any movement u in state x . e.g.

r(x , u) =

{
+100 if we expect u to bring us to the goal state
−1 otherwise

We get a reward of 100 for reaching the goal state and a movement
penalty of −1. We attempt to maximize the expected future payoff, which
will hopefully lead us to the goal state while minimizing future penalties.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 7 / 18



Value Iteration

We require an algorithm to evaluate the value of all possible states so that
we can choose the best next state from any current state (i.e. the best
movement). The algorithm used here is known as value iteration.

We first need to define a payoff function to get the immediate expected
reward or penalty for any movement u in state x . e.g.

r(x , u) =

{
+100 if we expect u to bring us to the goal state
−1 otherwise

We get a reward of 100 for reaching the goal state and a movement
penalty of −1.

We attempt to maximize the expected future payoff, which
will hopefully lead us to the goal state while minimizing future penalties.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 7 / 18



Value Iteration

We require an algorithm to evaluate the value of all possible states so that
we can choose the best next state from any current state (i.e. the best
movement). The algorithm used here is known as value iteration.

We first need to define a payoff function to get the immediate expected
reward or penalty for any movement u in state x . e.g.

r(x , u) =

{
+100 if we expect u to bring us to the goal state
−1 otherwise

We get a reward of 100 for reaching the goal state and a movement
penalty of −1. We attempt to maximize the expected future payoff, which
will hopefully lead us to the goal state while minimizing future penalties.

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 7 / 18



How do we measure the value of future payoffs?

Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff.

This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff.

This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T .

However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T .

However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.

Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.

Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs.

Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞.

In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



How do we measure the value of future payoffs? Define a planning
horizon of T time steps and maximize payoffs within this time frame.

1 T = 1: The robot is very short-sighted and attempts only to
maximize the immediate payoff. This is known as the greedy case.

2 T > 1: The robot attempts to maximize payoff over the finite
planning horizon T . However, determining the best value for T may
be difficult.

3 T =∞: Clearly we cannot make plans infinitely far in advance.
Instead we define a discount factor γ < 1 which is used to discount
future payoffs. Future payoffs are discounted by γτ where τ goes from
1→∞. In practice we only plan ahead up to the point where γτ

becomes negligible.

The value iteration algorithm uses T =∞ with future payoffs discounted
by γτ .



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff.

Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ.

For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



Our fundamental goal is to define a control policy which is a mapping
from states to actions:

π : x → u

We wish to determine the policy π that maximizes future cumulative
payoff. Consider first the optimal policy for T = 1:

π1(x) = argmax
u

r(x , u)

(argmax
a

f (a) is the value for a at which f (a) attains its maximum value.

It could be a set if there are ties for the maximum.)

We define a value function VT (x) which gives the expected payoff for the
current policy, discounted by γ. For T = 1 it is,

V1(x) = γmax
u

r(x , u)

(maxa f (a) is the maximum value for f (a).)



We continue for larger planning horizons.

For T = 2 we consider the best
next move and then incorporate the expected value of all the places we
might end up (x ′) after making the move u.

π2(x) = argmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
Remember that r(x , u) gives the expected payoff for u, but the results of
our actions our uncertain, which is why we must incorporate the expected
value for all possible next states x ′. The value function for T = 2 is,

V2(x) = γmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
The discount factor γ is applied to the immediate reward r(x , u) as before,
as well as being applied within the definition of V1(x).



We continue for larger planning horizons. For T = 2 we consider the best
next move and then incorporate the expected value of all the places we
might end up (x ′) after making the move u.

π2(x) = argmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
Remember that r(x , u) gives the expected payoff for u, but the results of
our actions our uncertain, which is why we must incorporate the expected
value for all possible next states x ′. The value function for T = 2 is,

V2(x) = γmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
The discount factor γ is applied to the immediate reward r(x , u) as before,
as well as being applied within the definition of V1(x).



We continue for larger planning horizons. For T = 2 we consider the best
next move and then incorporate the expected value of all the places we
might end up (x ′) after making the move u.

π2(x) = argmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]

Remember that r(x , u) gives the expected payoff for u, but the results of
our actions our uncertain, which is why we must incorporate the expected
value for all possible next states x ′. The value function for T = 2 is,

V2(x) = γmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
The discount factor γ is applied to the immediate reward r(x , u) as before,
as well as being applied within the definition of V1(x).



We continue for larger planning horizons. For T = 2 we consider the best
next move and then incorporate the expected value of all the places we
might end up (x ′) after making the move u.

π2(x) = argmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
Remember that r(x , u) gives the expected payoff for u, but the results of
our actions our uncertain, which is why we must incorporate the expected
value for all possible next states x ′.

The value function for T = 2 is,

V2(x) = γmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
The discount factor γ is applied to the immediate reward r(x , u) as before,
as well as being applied within the definition of V1(x).



We continue for larger planning horizons. For T = 2 we consider the best
next move and then incorporate the expected value of all the places we
might end up (x ′) after making the move u.

π2(x) = argmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
Remember that r(x , u) gives the expected payoff for u, but the results of
our actions our uncertain, which is why we must incorporate the expected
value for all possible next states x ′. The value function for T = 2 is,

V2(x) = γmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
The discount factor γ is applied to the immediate reward r(x , u) as before,
as well as being applied within the definition of V1(x).



We continue for larger planning horizons. For T = 2 we consider the best
next move and then incorporate the expected value of all the places we
might end up (x ′) after making the move u.

π2(x) = argmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
Remember that r(x , u) gives the expected payoff for u, but the results of
our actions our uncertain, which is why we must incorporate the expected
value for all possible next states x ′. The value function for T = 2 is,

V2(x) = γmax
u

[
r(x , u) +

∫
V1(x ′)p(x ′|u, x)dx ′

]
The discount factor γ is applied to the immediate reward r(x , u) as before,
as well as being applied within the definition of V1(x).



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]

VT (x) = γmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]

Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times.

γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases.

Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞.

Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]

This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T .

Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid.

V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



We can infer the general form for the optimal policy and associated value
function for any T ,

πT (x) = argmax
u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
VT (x) = γmax

u

[
r(x , u) +

∫
VT−1(x ′)p(x ′|u, x)dx ′

]
Since VT (x) is defined recursively, you can see that the discount factor will
be applied T times. γ is usually set to a value just less than one (e.g.
0.99). So γT will become vanishingly small as T increases. Thus, we
expect VT (x) to converge to some finite value as T →∞. Hence,

V∞(x) = γmax
u

[
r(x , u) +

∫
V∞(x ′)p(x ′|u, x)dx ′

]
This expression leads to a concrete algorithm which progressively refines
the value function for increasing values of T . Assume that the value
function is stored in a discrete grid. V (xi ) represents the value function for
discrete state xi .



Algorithm (VERSION 1)

discreteValueIteration()

for i = 1 to N
V (xi ) = rmin

end for
repeat until convergence

for i = 1 to N
V (xi ) = γmaxu

[
r(xi , u) +

∑N
j=1 V (xj)p(xj |u, xi )

]
end for

end repeat

controlPolicy(xi , V )

return argmax
u

[
r(xi , u) +

∑N
j=1 V (xj)p(xj |u, xi )

]

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 12 / 18



Algorithm (VERSION 1)

discreteValueIteration()

for i = 1 to N
V (xi ) = rmin

end for
repeat until convergence

for i = 1 to N
V (xi ) = γmaxu

[
r(xi , u) +

∑N
j=1 V (xj)p(xj |u, xi )

]
end for

end repeat

controlPolicy(xi , V )

return argmax
u

[
r(xi , u) +

∑N
j=1 V (xj)p(xj |u, xi )

]

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 12 / 18



There is an issue with this version (VERSION 1) of value iteration.
Consider the value update equation:

V (xi ) = γmax
u

r(xi , u) +
N∑
j=1

V (xj)p(xj |u, xi )


Here, rewards come from executing actions in particular states—not from
reaching states (e.g. the goal state). If it is arrival in a state that brings a
reward, the following formulation is better:

V (xi ) = γmax
u

 N∑
j=1

p(xj |u, xi ) (r(xj , u) + V (xj))


Using this, and the similarly modified policy rule, gives us VERSION 2 of
the algorithm...



There is an issue with this version (VERSION 1) of value iteration.
Consider the value update equation:

V (xi ) = γmax
u

r(xi , u) +
N∑
j=1

V (xj)p(xj |u, xi )



Here, rewards come from executing actions in particular states—not from
reaching states (e.g. the goal state). If it is arrival in a state that brings a
reward, the following formulation is better:

V (xi ) = γmax
u

 N∑
j=1

p(xj |u, xi ) (r(xj , u) + V (xj))


Using this, and the similarly modified policy rule, gives us VERSION 2 of
the algorithm...



There is an issue with this version (VERSION 1) of value iteration.
Consider the value update equation:

V (xi ) = γmax
u

r(xi , u) +
N∑
j=1

V (xj)p(xj |u, xi )


Here, rewards come from executing actions in particular states—not from
reaching states (e.g. the goal state). If it is arrival in a state that brings a
reward, the following formulation is better:

V (xi ) = γmax
u

 N∑
j=1

p(xj |u, xi ) (r(xj , u) + V (xj))


Using this, and the similarly modified policy rule, gives us VERSION 2 of
the algorithm...



There is an issue with this version (VERSION 1) of value iteration.
Consider the value update equation:

V (xi ) = γmax
u

r(xi , u) +
N∑
j=1

V (xj)p(xj |u, xi )


Here, rewards come from executing actions in particular states—not from
reaching states (e.g. the goal state). If it is arrival in a state that brings a
reward, the following formulation is better:

V (xi ) = γmax
u

 N∑
j=1

p(xj |u, xi ) (r(xj , u) + V (xj))



Using this, and the similarly modified policy rule, gives us VERSION 2 of
the algorithm...



There is an issue with this version (VERSION 1) of value iteration.
Consider the value update equation:

V (xi ) = γmax
u

r(xi , u) +
N∑
j=1

V (xj)p(xj |u, xi )


Here, rewards come from executing actions in particular states—not from
reaching states (e.g. the goal state). If it is arrival in a state that brings a
reward, the following formulation is better:

V (xi ) = γmax
u

 N∑
j=1

p(xj |u, xi ) (r(xj , u) + V (xj))


Using this, and the similarly modified policy rule, gives us VERSION 2 of
the algorithm...



Algorithm (VERSION 2)

discreteValueIteration()

for i = 1 to N
V (xi ) = rmin

end for
repeat until convergence

for i = 1 to N
V (xi ) = γmaxu

[∑N
j=1 p(xj |u, xi ) (r(xj , u) + V (xj))

]
end for

end repeat

controlPolicy(xi , V )

return argmax
u

[∑N
j=1 p(xj |u, xi ) (r(xj , u) + V (xj))

]

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 14 / 18



Algorithm (VERSION 2)

discreteValueIteration()

for i = 1 to N
V (xi ) = rmin

end for
repeat until convergence

for i = 1 to N
V (xi ) = γmaxu

[∑N
j=1 p(xj |u, xi ) (r(xj , u) + V (xj))

]
end for

end repeat

controlPolicy(xi , V )

return argmax
u

[∑N
j=1 p(xj |u, xi ) (r(xj , u) + V (xj))

]

COMP 4766/6912 (MUN) Probabilistic Planning July 13, 2018 14 / 18



Figure 14.4 An example of an infinite-horizon value function T∞, assuming that the

goal state is an “absorbing state.” This value function induces the policy shown in

Figure 14.2a.



(a) (b)

Figure 14.5 Example of value iteration over state spaces in robot motion. Obstacles

are shown in black. The value function is indicated by the gray shaded area. Greedy

action selection with respect to the value function lead to optimal control, assuming

that the robot’s pose is observable. Also shown in the diagrams are example paths

obtained by following the greedy policy.



(a) (b)

Figure 14.6 (a) 2-DOF robot arm in an environment with obstacles. (b) The configu-

ration space of this arm: the horizontal axis corresponds to the shoulder joint, and the

vertical axis to its elbow joint configuration. Obstacles are shown in gray. The small

dot in this diagram corresponds to the configuration on the left.



(a) (b)

Figure 14.7 (a) Value iteration applied to a coarse discretization of the configura-

tion space. (b) Path in workspace coordinates. The robot indeed avoids the vertical

obstacle.


	Introduction
	Markov Decision Process
	Value Iteration
	Algorithm (VERSION 1)
	Algorithm (VERSION 2)

