Perception, Part 1
Sensors and Ranging

Computer Science 6912

Department of Computer Science
Memorial University of Newfoundland

June 7, 2017
1. Sensor Characteristics

2. Optical Encoders

3. Heading Sensors

4. Active Ranging
Robart II, H.R. Everett

Sensors: inertial measurement unit, wheel encoders, omnidirectional camera, pan-tilt camera, sonars, laser rangefinder, bumpers
Sensors: inertial measurement unit, wheel encoders, omnidirectional camera, pan-tilt camera, sonars, laser rangefinder, bumpers
Sensors are classified along two main dimensions:

- **Proprioceptive / Exteroceptive**
 - Proprioceptive: Sensors which measure quantities internal to the robot (e.g. wheel angle, motor speed, internal temperature,...)
 - Exteroceptive: Sensors which measure properties of the environment (e.g. light intensity, sound level, distance of wall,...)

- **Passive / Active**
 - Passive: Sensors which measure the existing forces and energies in the environment (e.g. cameras, microphones, contact switches)
 - Active: Sensors which emit energy and measure the environment's response to that energy (e.g. radar, ultrasonic sensors, laser rangefinders,...)

Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption.
Sensors are classified along two main dimensions:

- Proprioceptive / Exteroceptive

- Passive / Active
 - Passive: Sensors which measure the existing forces and energies in the environment (e.g. cameras, microphones, contact switches)
 - Active: Sensors which emit energy and measure the environment's response to that energy (e.g. radar, ultrasonic sensors, laser rangefinders, ...)

Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption.
Sensors are classified along two main dimensions:

1. **Proprioceptive / Exteroceptive**
 - **Proprioceptive**: Sensors which measure quantities internal to the robot (e.g. wheel angle, motor speed, internal temperature, ...)
 - **Exteroceptive**: Sensors which measure properties of the environment (e.g. light intensity, sound level, distance of wall, ...)

2. **Passive / Active**
 - **Passive**: Sensors which measure the existing forces and energies in the environment (e.g. cameras, microphones, contact switches)
 - **Active**: Sensors which emit energy and measure the environment's response to that energy (e.g. radar, ultrasonic sensors, laser rangefinders, ...)

Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption.
Sensors

- Sensors are classified along two main dimensions:
 - Proprioceptive / Exteroceptive
 - Proprioceptive: Sensors which measure quantities internal to the robot (e.g. wheel angle, motor speed, internal temperature,...)
 - Exteroceptive: Sensors which measure properties of the environment (e.g. light intensity, sound level, distance of wall,...)
 - Passive / Active
 - Passive: Sensors which measure the existing forces and energies in the environment (e.g. cameras, microphones, contact switches)
 - Active: Sensors which emit energy and measure the environment's response to that energy (e.g. radar, ultrasonic sensors, laser rangefinders,...)

Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption.
Sensors

- Sensors are classified along two main dimensions:
 - Proprioceptive / Exteroceptive
 - Proprioceptive: Sensors which measure quantities internal to the robot (e.g. wheel angle, motor speed, internal temperature,...)
 - Exteroceptive: Sensors which measure properties of the environment (e.g. light intensity, sound level, distance of wall,...)
 - Passive / Active

- Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption.
Sensors

- Sensors are classified along two main dimensions:
 - Proprioceptive / Exteroceptive
 - Proprioceptive: Sensors which measure quantities internal to the robot (e.g. wheel angle, motor speed, internal temperature,...)
 - Exteroceptive: Sensors which measure properties of the environment (e.g. light intensity, sound level, distance of wall,...)
 - Passive / Active
 - Passive: Sensors which measure the existing forces and energies in the environment (e.g. cameras, microphones, contact switches)
 - Active: Sensors which emit energy and measure the environment's response to that energy (e.g. radar, ultrasonic sensors, laser rangefinders,...)

Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption.
Sensors are classified along two main dimensions:

- **Proprioceptive / Exteroceptive**
 - Proprioceptive: Sensors which measure quantities internal to the robot (e.g. wheel angle, motor speed, internal temperature,...)
 - Exteroceptive: Sensors which measure properties of the environment (e.g. light intensity, sound level, distance of wall,...)

- **Passive / Active**
 - Passive: Sensors which measure the existing forces and energies in the environment (e.g. cameras, microphones, contact switches)
 - Active: Sensors which emit energy and measure the environment’s response to that energy (e.g. radar, ultrasonic sensors, laser rangefinders, ...)

Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption.
Sensors are classified along two main dimensions:

- **Proprioceptive / Exteroceptive**
 - Proprioceptive: Sensors which measure quantities internal to the robot (e.g. wheel angle, motor speed, internal temperature,...)
 - Exteroceptive: Sensors which measure properties of the environment (e.g. light intensity, sound level, distance of wall,...)

- **Passive / Active**
 - Passive: Sensors which measure the existing forces and energies in the environment (e.g. cameras, microphones, contact switches)
 - Active: Sensors which emit energy and measure the environment’s response to that energy (e.g. radar, ultrasonic sensors, laser rangefinders, ...)
 - Active sensors can sometimes achieve superior performance, but suffer from problems with interference and power consumption
<table>
<thead>
<tr>
<th>General classification (typical use)</th>
<th>Sensor System</th>
<th>PC or EC</th>
<th>A or P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactile sensors (detection of physical contact or closeness; security switches)</td>
<td>Contact switches, bumpers</td>
<td>EC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Optical barriers</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Noncontact proximity sensors</td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td>Wheel/motor sensors (wheel/motor speed and position)</td>
<td>Brush encoders</td>
<td>PC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Potentiometers</td>
<td>PC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Synchros, resolvers</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Optical encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Magnetic encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Inductive encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Capacitive encoders</td>
<td>PC</td>
<td>A</td>
</tr>
<tr>
<td>Heading sensors (orientation of the robot in relation to a fixed reference frame)</td>
<td>Compass</td>
<td>EC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Gyroscopes</td>
<td>PC</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Inclinometers</td>
<td>EC</td>
<td>A/P</td>
</tr>
</tbody>
</table>

A, active; P, passive; P/A passive/active; PC proprioceptive; EC exteroceptive
<table>
<thead>
<tr>
<th>Ground-based beacons (localization in a fixed reference frame)</th>
<th>GPS</th>
<th>Active optical or RF beacons</th>
<th>Active ultrasonic beacons</th>
<th>Reflective beacons</th>
<th>EC</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active ranging (reflectivity, time-of-flight, and geometric triangulation)</td>
<td>Reflectivity sensors</td>
<td>Ultrasonic sensor</td>
<td>Laser rangefinder</td>
<td>Optical triangulation (1D)</td>
<td>Structured light (2D)</td>
<td>EC</td>
</tr>
<tr>
<td>Motion/speed sensors (speed relative to fixed or moving objects)</td>
<td>Doppler radar</td>
<td>Doppler sound</td>
<td></td>
<td></td>
<td>EC</td>
<td>A</td>
</tr>
<tr>
<td>Vision-based sensors (visual ranging, whole-image analysis, segmentation, object recognition)</td>
<td>CCD/CMOS camera(s)</td>
<td>Visual ranging packages</td>
<td>Object tracking packages</td>
<td></td>
<td>EC</td>
<td>P</td>
</tr>
</tbody>
</table>

A, active; P, passive; P/A passive/active; PC proprioceptive; EC exteroceptive
Sensor Characteristics

- **Range**: The minimum and maximum input values
Sensor Characteristics

- **Range**: The minimum and maximum input values
- **Dynamic range**: Ratio of maximum to minimum input values

Example: the ratio in sound pressure from the loudest rock concert to the lowest audible tone is about 10,000,000,000.

Usually measured in decibels: $10 \cdot \log_{10} \left(\frac{\text{max. input value}}{\text{min. input value}} \right)$

Human hearing: 100 dB

Decibels describe the ratio between two quantities of power; if measuring something which has to be squared to be proportional to power (e.g. voltage), the 10 is replaced with 20.
Sensor Characteristics

- **Range**: The minimum and maximum input values
- **Dynamic range**: Ratio of maximum to minimum input values
 - Example: the ratio in sound pressure from the loudest rock concert to the lowest audible tone is about 10,000,000,000.
Sensor Characteristics

- **Range**: The minimum and maximum input values
- **Dynamic range**: Ratio of maximum to minimum input values
 - Example: the ratio in sound pressure from the loudest rock concert to the lowest audible tone is about 10,000,000,000.
 - Usually measured in decibels:
Sensor Characteristics

- **Range**: The minimum and maximum input values
- **Dynamic range**: Ratio of maximum to minimum input values
 - Example: the ratio in sound pressure from the loudest rock concert to the lowest audible tone is about $10,000,000,000$.
 - Usually measured in decibels:
 $$10 \cdot \log_{10} \left(\frac{\text{max. input value}}{\text{min. input value}} \right)$$

Human hearing: 100 dB

Decibels describe the ratio between two quantities of power; if measuring something which has to be squared to be proportional to power (e.g., voltage), the 10 is replaced with 20.

COMP 6912 (MUN) Perception, Part 1: Sensors and Ranging June 7, 2017
Sensor Characteristics

- **Range**: The minimum and maximum input values
- **Dynamic range**: Ratio of maximum to minimum input values
 - Example: the ratio in sound pressure from the loudest rock concert to the lowest audible tone is about 10,000,000,000.
 - Usually measured in decibels:

\[
10 \cdot \log_{10} \left(\frac{\text{max. input value}}{\text{min. input value}} \right)
\]
Sensor Characteristics

- **Range**: The minimum and maximum input values
- **Dynamic range**: Ratio of maximum to minimum input values
 - Example: the ratio in sound pressure from the loudest rock concert to the lowest audible tone is about 10,000,000,000.
 - Usually measured in decibels:

 \[10 \cdot \log_{10} \left(\frac{\text{max. input value}}{\text{min. input value}} \right) \]

- Human hearing: 100 dB
Sensor Characteristics

- **Range**: The minimum and maximum input values
- **Dynamic range**: Ratio of maximum to minimum input values
 - Example: the ratio in sound pressure from the loudest rock concert to the lowest audible tone is about 10,000,000,000.
 - Usually measured in decibels:
 \[10 \cdot \log_{10} \left(\frac{\text{max. input value}}{\text{min. input value}} \right) \]

- Human hearing: 100 dB
- Decibels describe the ratio between two quantities of power; if measuring something which has to be squared to be proportional to power (e.g. voltage), the 10 is replaced with 20
Resolution: Minimum detectable difference between two values
Resolution: Minimum detectable difference between two values
 e.g. 8 bits to measure a signal from 0 - 5 V
Resolution: Minimum detectable difference between two values
- e.g. 8 bits to measure a signal from 0 - 5 V
Resolution: Minimum detectable difference between two values
- e.g. 8 bits to measure a signal from 0 - 5 V;
 Resolution is $\frac{5 \text{ V}}{255} \approx 20 \text{ mV}$
- **Resolution**: Minimum detectable difference between two values
 - e.g. 8 bits to measure a signal from 0 - 5 V;
 - Resolution is $\frac{5 \text{ V}}{255} \approx 20 \text{ mV}$

- **Linearity**: Sensor is linear if two different inputs, x and y, yield outputs $f(x)$ and $f(y)$, and an input that is some combination of the two, $ax + by$, yields output $af(x) + bf(y)$
Resolution: Minimum detectable difference between two values
- e.g. 8 bits to measure a signal from 0 - 5 V; Resolution is 5 V / 255 \(\approx 20 \text{ mV}\)

Linearity: Sensor is linear if two different inputs, \(x\) and \(y\), yield outputs \(f(x)\) and \(f(y)\), and an input that is some combination of the two, \(ax + by\), yields output \(af(x) + bf(y)\)

Bandwidth or frequency: Rate of sensor updates per second
- **Resolution**: Minimum detectable difference between two values
 - e.g. 8 bits to measure a signal from 0 - 5 V;
 Resolution is $\frac{5 \text{ V}}{255} \approx 20 \text{ mV}$

- **Linearity**: Sensor is linear if two different inputs, x and y, yield outputs $f(x)$ and $f(y)$, and an input that is some combination of the two, $ax + by$, yields output $af(x) + bf(y)$

- **Bandwidth or frequency**: Rate of sensor updates per second
 - e.g. Typical video frame rate is 30 Hz
Error: \(\text{error} = m - v \), where \(m \) is measurement and \(v \) is the true value.
• **Error:** $error = m - v$, where m is measurement and v is the true value

• **Accuracy:** Degree to which measured values are correct,
- **Error**: $error = m - v$, where m is measurement and v is the true value
- **Accuracy**: Degree to which measured values are correct,
- **Error**: $error = m - v$, where m is measurement and v is the true value.
- **Accuracy**: Degree to which measured values are correct,
 \[
 accuracy = 1 - \frac{|error|}{v}
 \]
- **Error**: \(\text{error} = m - \nu \), where \(m \) is measurement and \(\nu \) is the true value

- **Accuracy**: Degree to which measured values are correct,

\[
\text{accuracy} = 1 - \frac{|\text{error}|}{\nu}
\]

- **Precision**: Degree to which measured values agree,
- **Error**: \(\text{error} = m - v \), where \(m \) is measurement and \(v \) is the true value.

- **Accuracy**: Degree to which measured values are correct,

\[
\text{accuracy} = 1 - \frac{|\text{error}|}{v}
\]

- **Precision**: Degree to which measured values agree,
- **Error**: \(\text{error} = m - v \), where \(m \) is measurement and \(v \) is the true value.

- **Accuracy**: Degree to which measured values are correct,

 \[
 \text{accuracy} = 1 - \frac{|\text{error}|}{v}
 \]

- **Precision**: Degree to which measured values agree,

 \[
 \text{precision} = \frac{\text{range}}{\sigma}
 \]
- **Error**: \(\text{error} = m - v \), where \(m \) is measurement and \(v \) is the true value

- **Accuracy**: Degree to which measured values are correct,

\[
\text{accuracy} = 1 - \frac{|\text{error}|}{v}
\]

- **Precision**: Degree to which measured values agree,

\[
\text{precision} = \frac{\text{range}}{\sigma}
\]

where \(\sigma \) is the standard deviation of the sensor’s random error
Error: error = m – ν, where m is measurement and ν is the true value

Accuracy: Degree to which measured values are correct,

\[
accuracy = 1 - \frac{|error|}{\nu}
\]

Precision: Degree to which measured values agree,

\[
precision = \frac{range}{\sigma}
\]

where σ is the standard deviation of the sensor’s random error
Optical Encoders

- Optical encoders are used to measure angular position.
Optical Encoders

- Optical encoders are used to measure angular position
- Encoders are ________ceptive sensors
Optical Encoders

- Optical encoders are used to measure angular position
- Encoders are ________ceptive sensors
- Wheel rotations can be integrated over time to estimate position, but positional estimate is subject to cumulative error
Optical Encoders

- Optical encoders are used to measure angular position
- Encoders are ______ceptive sensors
- Wheel rotations can be integrated over time to estimate position, but positional estimate is subject to cumulative error
- A code disk rotates with the wheel, and a photo-emitter / detector pair senses the light being blocked and unblocked
Optical Encoders

- Optical encoders are used to measure angular position.
- Encoders are _______ceptive sensors.
- Wheel rotations can be integrated over time to estimate position, but positional estimate is subject to cumulative error.
- A code disk rotates with the wheel, and a photo-emitter / detector pair senses the light being blocked and unblocked.
Optical encoders are used to measure angular position

Encoders are _______ceptive sensors

Wheel rotations can be integrated over time to estimate position, but positional estimate is subject to cumulative error

A code disk rotates with the wheel, and a photo-emitter / detector pair senses the light being blocked and unblocked
Optical Encoders

- Optical encoders are used to measure angular position
- Encoders are ________ceptive sensors
- Wheel rotations can be integrated over time to estimate position, but positional estimate is subject to cumulative error
- A code disk rotates with the wheel, and a photo-emitter / detector pair senses the light being blocked and unblocked
Absolute encoders require one photo-emitter / detector pair per bit of position resolution
Absolute encoders require one photo-emitter / detector pair per bit of position resolution; Shown below are two common types of code disks.
Absolute encoders require one photo-emitter / detector pair per bit of position resolution; Shown below are two common types of code disks:

- **Gray–Code**
- **Dual–Code**

![Gray–Code](image1.png)

![Dual–Code](image2.png)
Absolute encoders require one photo-emitter / detector pair per bit of position resolution; Shown below are two common types of code disks:

Gray–Code

Dual–Code

The dual-code disk is straight binary.
Absolute encoders require one photo-emitter / detector pair per bit of position resolution; Shown below are two common types of code disks

Gray–Code

Dual–Code

The dual-code disk is straight binary; The gray-code disk has the advantage that only one bit changes at a time
Absolute encoders require one photo-emitter / detector pair per bit of position resolution; Shown below are two common types of code disks

Gray–Code

Dual–Code

The dual-code disk is straight binary; The gray-code disk has the advantage that only one bit changes at a time
Incremental encoders operate by counting the number of ticks along one or more rings.
Incremental encoders operate by counting the number of ticks along one or more rings; A quadrature encoder is a type of incremental encoder which counts incoming pulse trains that are separated in phase by 90°;
Incremental encoders operate by counting the number of ticks along one or more rings; A *quadrature encoder* is a type of incremental encoder which counts incoming pulse trains that are separated in phase by 90°; One way to achieve this is by using two code rings;
Incremental encoders operate by counting the number of ticks along one or more rings; A *quadrature encoder* is a type of incremental encoder which counts incoming pulse trains that are separated in phase by 90°; One way to achieve this is by using two code rings;
Incremental encoders operate by counting the number of ticks along one or more rings; A *quadrature encoder* is a type of incremental encoder which counts incoming pulse trains that are separated in phase by 90°; One way to achieve this is by using two code rings;

- For each ring there is a photo-emitter / detector pair
Incremental encoders operate by counting the number of ticks along one or more rings; A quadrature encoder is a type of incremental encoder which counts incoming pulse trains that are separated in phase by 90°; One way to achieve this is by using two code rings;

- For each ring there is a photo-emitter / detector pair
- Direction of rotation given by the phase difference between the emitter signals (i.e. by which one is ‘leading’)
The two rings allow four different states to be detected; this doubles the resolution over a one-ring incremental encoder. Typically around 2000 CPR (cycles per revolution).

Industrial optical encoders present no bandwidth limitation to mobile robot applications.

<table>
<thead>
<tr>
<th>State</th>
<th>Ch A</th>
<th>Ch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>S_2</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>S_3</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>S_4</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
The two rings allow four different states to be detected.

<table>
<thead>
<tr>
<th>State</th>
<th>Ch A</th>
<th>Ch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>S_2</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>S_3</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>S_4</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
The two rings allow four different states to be detected.

<table>
<thead>
<tr>
<th>State</th>
<th>Ch A</th>
<th>Ch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>S₂</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>S₃</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>S₄</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
The two rings allow four different states to be detected; This doubles the **resolution** over a one-ring incremental encoder.

<table>
<thead>
<tr>
<th>State</th>
<th>Ch A</th>
<th>Ch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>S_2</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>S_3</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>S_4</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
The two rings allow four different states to be detected; This doubles the **resolution** over a one-ring incremental encoder.

- Typically around 2000 CPR (cycles per revolution)
The two rings allow four different states to be detected; This doubles the resolution over a one-ring incremental encoder.

- Typically around 2000 CPR (cycles per revolution)
- “Industrial optical encoders present no bandwidth limitation to mobile robot applications”
Compasses are exteroceptive
Compasses are exteroceptive

Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions.
Heading Sensors

- **Compasses** are exteroceptive
- Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions
Compasses are exteroceptive

- Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions
 - Cheap, but resolution and accuracy are poor
Compasses are exteroceptive

Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions
- Cheap, but resolution and accuracy are poor
- Filtering circuits can improve performance (e.g. by averaging values over time), but reduce bandwidth
Compass sensors are exteroceptive.

- Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions:
 - Cheap, but resolution and accuracy are poor.
 - Filtering circuits can improve performance (e.g., by averaging values over time), but reduce bandwidth.
- Flux gate compasses measure the phase difference induced by the magnetic field in two coils with applied alternating current.

All magnetic compasses are subject to local variations in magnetic field, generally unsuitable for indoor environments.
Compasses are exteroceptive

Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions

- Cheap, but resolution and accuracy are poor
- Filtering circuits can improve performance (e.g. by averaging values over time), but reduce bandwidth

Flux gate compasses measure the phase difference induced by the magnetic field in two coils with applied alternating current

- Improved resolution and accuracy, but larger and more expensive
Compasses are exteroceptive

Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions
 - Cheap, but resolution and accuracy are poor
 - Filtering circuits can improve performance (e.g. by averaging values over time), but reduce bandwidth

Flux gate compasses measure the phase difference induced by the magnetic field in two coils with applied alternating current
 - Improved resolution and accuracy, but larger and more expensive

All magnetic compasses are subject to local variations in magnetic field
Compasses are exteroceptive

Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions
- Cheap, but resolution and accuracy are poor
- Filtering circuits can improve performance (e.g. by averaging values over time), but reduce bandwidth

Flux gate compasses measure the phase difference induced by the magnetic field in two coils with applied alternating current
- Improved resolution and accuracy, but larger and more expensive

All magnetic compasses are subject to local variations in magnetic field
Compasses are exteroceptive

Hall effect compasses measure the voltage difference induced by the magnetic field in two orthogonal directions
 - Cheap, but resolution and accuracy are poor
 - Filtering circuits can improve performance (e.g. by averaging values over time), but reduce bandwidth

Flux gate compasses measure the phase difference induced by the magnetic field in two coils with applied alternating current
 - Improved resolution and accuracy, but larger and more expensive

All magnetic compasses are subject to local variations in magnetic field → generally unsuitable for indoor environments
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...

Time (measured by atomic clock)
Its position and the positions of all other GPS satellites

A GPS receiver is passive and exteroceptive; it measures the time of flight and uses this to estimate the pseudorange to the satellites. This is not a true range because of the offset of the receiver's inexpensive quartz clock from satellite time.

Four satellites must be in view so that the variables \(x\), \(y\), \(z\), and \(\Delta t\) can be estimated. The requirement of four line-of-sight satellites means that GPS information is unavailable in confined spaces—generally not useful indoors.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator
- Each satellite transmits...
 - Time (measured by atomic clock)
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits:
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites.
- A GPS receiver is passive and exteroceptive.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites.
- A GPS receiver is passive and exteroceptive.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator
- Each satellite transmits...
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites
- A GPS receiver is passive and exteroceptive; It measures the time of flight and uses this to estimate the *pseudorange* to the satellites
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites.
- A GPS receiver is passive and exteroceptive; It measures the time of flight and uses this to estimate the *pseudorange* to the satellites; This is not a true range because of the offset of the receiver’s inexpensive quartz clock from satellite time.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites.
- A GPS receiver is passive and exteroceptive; it measures the time of flight and uses this to estimate the pseudorange to the satellites; This is not a true range because of the offset of the receiver’s inexpensive quartz clock from satellite time; Four satellites must be in view so that the variables \(x, y, z \), and \(\Delta t \) can be estimated.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites.
- A GPS receiver is passive and exteroceptive; It measures the time of flight and uses this to estimate the pseudorange to the satellites; This is not a true range because of the offset of the receiver’s inexpensive quartz clock from satellite time; Four satellites must be in view so that the variables x, y, z, and Δt can be estimated.
- The requirement of four line-of-sight satellites means that GPS information is unavailable in confined spaces.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...
 - Time (measured by atomic clock)
 - Its position and the positions of all other GPS satellites.
- A GPS receiver is passive and exteroceptive; it measures the time of flight and uses this to estimate the pseudorange to the satellites; this is not a true range because of the offset of the receiver’s inexpensive quartz clock from satellite time; four satellites must be in view so that the variables x, y, z, and Δt can be estimated.
- The requirement of four line-of-sight satellites means that GPS information is unavailable in confined spaces.
Global Positioning System (GPS)

- GPS was developed for use by the US military, but is now also available for civilian use.
- 24+ satellites orbiting the planet in six planes inclined at 55° to the equator.
- Each satellite transmits...
 - Time (measured by atomic clock).
 - Its position and the positions of all other GPS satellites.
- A GPS receiver is passive and exteroceptive; it measures the time of flight and uses this to estimate the pseudorange to the satellites; This is not a true range because of the offset of the receiver’s inexpensive quartz clock from satellite time; Four satellites must be in view so that the variables x, y, z, and Δt can be estimated.
- The requirement of four line-of-sight satellites means that GPS information is unavailable in confined spaces → generally not useful indoors.
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$

where the division by two is necessary because the sound actually travels twice as far as the distance we wish to measure.

The speed of sound, c, is 343 m/s at standard air pressure and 20°C.
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$

We need the division by two because the sound actually travels twice as far as the distance we wish to measure.

$c = 343 \, \text{m/s}$ at standard air pressure and 20°C.
An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.

The time of flight, \(t \), along with the speed of sound, \(c \), give the distance,

\[
d = \frac{c \cdot t}{2}
\]

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.
- $c = 343 m/s$ at standard air pressure and $20^\circ C$
An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.

The time of flight, \(t \), along with the speed of sound, \(c \), give the distance,

\[
d = \frac{c \cdot t}{2}
\]

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.

\(c = 343 \text{ m/s} \) at standard air pressure and 20° C

Operation:
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.
- $c = 343 m/s$ at standard air pressure and $20^\circ C$
- Operation:
 - Emit wave packet
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, t, along with the speed of sound, c, give the distance,
 \[d = \frac{c \cdot t}{2} \]
 we need the division by two because the sound actually travels twice as far as the distance we wish to measure.
- $c = 343\, \text{m/s}$ at standard air pressure and $20^\circ\, \text{C}$
- Operation:
 - Emit wave packet
 - Start integrator to measure time
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, \(t \), along with the speed of sound, \(c \), give the distance:

\[
d = \frac{c \cdot t}{2}
\]

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.
- \(c = 343 \text{ m/s} \) at standard air pressure and 20° C

Operation:
- Emit wave packet
- Start integrator to measure time
- Threshold value initially high during “blanking period”
An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.

The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.

$c = 343\, m/s$ at standard air pressure and $20^\circ\, C$

Operation:
- Emit wave packet
- Start integrator to measure time
- Threshold value initially high during “blanking period”
- If reflected echo (with the right frequency) exceeds threshold, read the integrator’s value to determine t
Active Ranging: Ultrasonic Sensor

- An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.
- The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.

- $c = 343 \text{m/s}$ at standard air pressure and 20°C

Operation:
 - Emit wave packet
 - Start integrator to measure time
 - Threshold value initially high during “blanking period”
 - If reflected echo (with the right frequency) exceeds threshold, read the integrator’s value to determine t
An ultrasonic sensor transmits a high-frequency sound packet and measures the time it takes for the sound to rebound back to the sensor.

The time of flight, t, along with the speed of sound, c, give the distance,

$$d = \frac{c \cdot t}{2}$$

we need the division by two because the sound actually travels twice as far as the distance we wish to measure.

$c = 343 m/s$ at standard air pressure and 20° C

Operation:
- Emit wave packet
- Start integrator to measure time
- Threshold value initially high during “blanking period”
- If reflected echo (with the right frequency) exceeds threshold, read the integrator’s value to determine t
transmitted sound

wave packet

analog echo signal

threshold

digital echo signal

integrated time

output signal

integrator

time of flight (sensor output)
The sound propagates in the shape of a cone.
- The sound propagates in the shape of a cone
 - Opening angle $20^\circ - 40^\circ$
The sound propagates in the shape of a cone
 - Opening angle $20^\circ - 40^\circ$
 - Obtain the depth of regions, as opposed to points
- The sound propagates in the shape of a cone
 - Opening angle $20^\circ - 40^\circ$
 - Obtain the depth of regions, as opposed to points
- The sound propagates in the shape of a cone
 - Opening angle $20^\circ - 40^\circ$
 - Obtain the depth of regions, as opposed to points
Disadvantages:

- **Accuracy:** Diminishes with increasing angle between viewpoint and surface

- **Bandwidth:**
 - Single sensor: To allow time to detect object at 12 m, requires 70 ms → 14.3 Hz
 - 20 sensors: Apply each in sequence to avoid interference, requires 20 * 70 ms → 0.7 Hz
Disadvantages:

- **Accuracy**: Diminishes with increasing angle between viewpoint and surface
 - Coherent reflection of the sound causes the distance to be grossly overestimated
Disadvantages:

- **Accuracy:** Diminishes with increasing angle between viewpoint and surface

 - Coherent reflection of the sound causes the distance to be grossly overestimated
Disadvantages:

- **Accuracy:** Diminishes with increasing angle between viewpoint and surface
 - Coherent reflection of the sound causes the distance to be grossly overestimated

![Diagram](a) 360° scan
Disadvantages:

- **Accuracy:** Diminishes with increasing angle between viewpoint and surface
 - Coherent reflection of the sound causes the distance to be grossly overestimated

- Some materials simply absorb the sound (e.g. foam or cloth) and therefore are reported to be at the maximum range

a) 360° scan
Disadvantages:

- Accuracy: Diminishes with increasing angle between viewpoint and surface
 - Coherent reflection of the sound causes the distance to be grossly overestimated

- Some materials simply absorb the sound (e.g. foam or cloth) and therefore are reported to be at the maximum range

- Bandwidth:
Disadvantages:

- **Accuracy:** Diminishes with increasing angle between viewpoint and surface
 - Coherent reflection of the sound causes the distance to be grossly overestimated

- Some materials simply absorb the sound (e.g. foam or cloth) and therefore are reported to be at the maximum range

- **Bandwidth:**
 - Single sensor: To allow time to detect object at 12 m, requires 70 ms → 14.3 Hz
Disadvantages:

- **Accuracy:** Diminishes with increasing angle between viewpoint and surface
 - Coherent reflection of the sound causes the distance to be grossly overestimated

- Some materials simply absorb the sound (e.g. foam or cloth) and therefore are reported to be at the maximum range

- **Bandwidth:**
 - Single sensor: To allow time to detect object at 12 m, requires 70 ms → 14.3 Hz
 - 20 sensors: Apply each in sequence to avoid interference, requires 20 * 70 ms → 0.7 Hz
Like ultrasonic sensors, laser rangefinders measure the time of flight for emitted energy to strike a surface and return, converting this time into a distance.
Laser Rangefinders

- Like ultrasonic sensors, laser rangefinders measure the time of flight for emitted energy to strike a surface and return, converting this time into a distance.
- Transmitter emits a collimated beam of light in one direction.
Laser Rangefinders

- Like ultrasonic sensors, laser rangefinders measure the time of flight for emitted energy to strike a surface and return, converting this time into a distance.
- Transmitter emits a collimated beam of light in one direction.
- Receiver detects light which returns from the same direction.
Laser Rangefinders

- Like ultrasonic sensors, laser rangefinders measure the time of flight for emitted energy to strike a surface and return, converting this time into a distance.
- Transmitter emits a collimated beam of light in one direction.
- Receiver detects light which returns from the same direction.
- Surfaces with roughness greater than the wavelength of incident light will scatter the light in all directions.
Laser Rangefinders

- Like ultrasonic sensors, laser rangefinders measure the time of flight for emitted energy to strike a surface and return, converting this time into a distance.
- Transmitter emits a collimated beam of light in one direction.
- Receiver detects light which returns from the same direction.
- Surfaces with roughness greater than the wavelength of incident light will scatter the light in all directions.
 - Therefore some will get reflected back to the receiver.
Like ultrasonic sensors, laser rangefinders measure the time of flight for emitted energy to strike a surface and return, converting this time into a distance.

- Transmitter emits a collimated beam of light in one direction.
- Receiver detects light which returns from the same direction.
- Surfaces with roughness greater than the wavelength of incident light will scatter the light in all directions.
 - Therefore some will get reflected back to the receiver.
 - Coherent reflection only for extreme angles and/or highly polished surfaces.
Unlike ultrasonic sensors, measuring time of flight directly is difficult.

- Speed of sound $\approx 0.3 \, \text{m/ns}$; Speed of light $\approx 0.3 \, \text{m/ns}$
- A single "pulse" would take 20 ns to return after hitting a wall 3 m away.
- Measuring events that take place within 10's of nanoseconds requires expensive electronics.
- Easier to impose a known frequency on the laser and measure the phase shift in the reflected beam.
Unlike ultrasonic sensors, measuring time of flight directly is difficult.

- Speed of sound $\approx 0.3 \text{ m} / \text{ms}$; Speed of light $\approx 0.3 \text{ m} / \text{ns}$
Unlike ultrasonic sensors, measuring time of flight directly is difficult:

- Speed of sound $\approx 0.3 \text{ m} / \text{ms}$; Speed of light $\approx 0.3 \text{ m} / \text{ns}$
- A single “pulse” would take 20 ns to return after hitting a wall 3 m away
Unlike ultrasonic sensors, measuring time of flight directly is difficult

- Speed of sound $\approx 0.3 \text{ m / ms}$; Speed of light $\approx 0.3 \text{ m / ns}$
- A single “pulse” would take 20 ns to return after hitting a wall 3 m away
- Measuring events that take place within 10’s of nanoseconds requires expensive electronics
Unlike ultrasonic sensors, measuring time of flight directly is difficult

- Speed of sound $\approx 0.3 \text{ m/ ms}$; Speed of light $\approx 0.3 \text{ m/ ns}$
- A single “pulse” would take 20 ns to return after hitting a wall 3 m away
- Measuring events that take place within 10’s of nanoseconds requires expensive electronics
- Easier to impose a known frequency on the laser and measure the phase shift in the reflected beam
Unlike ultrasonic sensors, measuring time of flight directly is difficult:
- Speed of sound \(\approx 0.3 \text{ m} / \text{ms} \); Speed of light \(\approx 0.3 \text{ m} / \text{ns} \)
- A single “pulse” would take 20 ns to return after hitting a wall 3 m away
- Measuring events that take place within 10’s of nanoseconds requires expensive electronics
- Easier to impose a known frequency on the laser and measure the phase shift in the reflected beam
Unlike ultrasonic sensors, measuring time of flight directly is difficult:

- Speed of sound \(\approx 0.3 \text{ m / ms}\); Speed of light \(\approx 0.3 \text{ m / ns}\)
- A single “pulse” would take 20 ns to return after hitting a wall 3 m away
- Measuring events that take place within 10’s of nanoseconds requires expensive electronics
- Easier to impose a known frequency on the laser and measure the phase shift in the reflected beam

\[D \]
 Transmitting at frequency f

The time it takes for a full period to be transmitted is $T = \frac{1}{f}$, and the wavelength is therefore $\lambda = \frac{c}{f}$ where c is the speed of light.

Assume $f = 5 \text{ MHz}$, $\lambda = 60 \text{ m}$.

A beam which travels 30 m, reflects and returns with 0 phase difference. For the general case, the phase difference $\theta \in [0, 2\pi)$.

The ratio $\theta/2\pi$ reflects gives this phase as a proportion of a wavelength.

Hence, the overall distance of travel (both ways) is $\lambda \theta / 2\pi$.

The final distance is half the overall distance $D = \lambda \theta / 4\pi$.

Theoretically, the same distance measurement would be obtained for any other positive distance nD where n is an integer; in practice, the signal attenuates, so we will not likely get a sufficiently strong return for distances larger than D.
Transmitting at frequency f

\begin{align*}
\text{Period } T &= \frac{1}{f}, \text{ the time it takes for a full period to be transmitted.} \\
\text{The wavelength is therefore } \lambda &= c \cdot T = \frac{c}{f} \text{ where } c \text{ is the speed of light.}
\end{align*}

Assume $f = 5 \text{ MHz}$, $\lambda = 60 \text{ m}$.

A beam which travels 30 m, reflects and returns with 0 phase difference. The phase difference for the general case is $\theta \in [0, 2\pi)$.

The ratio $\theta/2\pi$ reflects gives this phase as a proportion of a wavelength.

Hence, the overall distance of travel (both ways) is $\lambda \theta/2\pi$.

The final distance is half the overall distance $D = \frac{\lambda \theta}{4\pi}$.

Theoretically, the same distance measurement would be obtained for any other positive distance nD where n is an integer; in practice, the signal attenuates, so we will not likely get a sufficiently strong return for distances larger than D.

Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted.
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = \frac{c}{f}$$

where c is the speed of light.

Assume $f = 5 \text{ MHz}$, $\lambda = 60 \text{ m}$.

A beam which travels 30 m, reflects and returns with 0 phase.

The phase difference for the general case is $\theta \in [0, 2\pi)$.

The ratio $\frac{\theta}{2\pi}$ reflects gives this phase as a proportion of a wavelength.

Hence, the overall distance of travel (both ways) is $\lambda \theta / 2\pi$.

The final distance is half the overall distance $D = \lambda \theta / 4\pi$.

Theoretically, the same distance measurement would be obtained for any other positive distance nD where n is an integer; In practice, the signal attenuates, so we will not likely get a sufficiently strong return for distances larger than D.

COMP 6912 (MUN)
Perception, Part 1: Sensors and Ranging
June 7, 2017 22 / 25
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$

where c is the speed of light
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$

where c is the speed of light

Assume $f = 5 \text{ MHz}$, $\lambda = 60 \text{ m}$
Transmitting at frequency \(f \); Period \(T = 1/f \), the time it takes for a full period to be transmitted; The wavelength is therefore

\[
\lambda = c \cdot T = c/f
\]

where \(c \) is the speed of light

Assume \(f = 5 \text{ MHz} \), \(\lambda = 60 \text{ m} \)

A beam which travels 30 m, reflects and returns with 0 phase
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$

where c is the speed of light.

Assume $f = 5 \text{ MHz}$, $\lambda = 60 \text{ m}$.

A beam which travels 30 m, reflects and returns with 0 phase.

The phase difference for the general case is $\theta \in [0, 2\pi)$.
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$

where c is the speed of light.

Assume $f = 5$ MHz, $\lambda = 60$ m.

A beam which travels 30 m, reflects and returns with 0 phase.

The phase difference for the general case is $\theta \in [0, 2\pi)$.

The ratio $\theta/2\pi$ reflects gives this phase as a proportion of a wavelength.
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$

where c is the speed of light

- Assume $f = 5$ MHz, $\lambda = 60$ m
- A beam which travels 30 m, reflects and returns with 0 phase
- The phase difference for the general case is $\theta \in [0, 2\pi)$
- The ratio $\theta/2\pi$ reflects gives this phase as a proportion of a wavelength
- Hence, the overall distance of travel (both ways) is $\lambda \theta/2\pi$
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$

where c is the speed of light.

- Assume $f = 5$ MHz, $\lambda = 60$ m
- A beam which travels 30 m, reflects and returns with 0 phase
- The phase difference for the general case is $\theta \in [0, 2\pi)$
- The ratio $\theta/2\pi$ reflects gives this phase as a proportion of a wavelength
- Hence, the overall distance of travel (both ways) is $\lambda\theta/2\pi$
- The final distance is half the overall distance $D = \lambda\theta/4\pi$
Transmitting at frequency f; Period $T = 1/f$, the time it takes for a full period to be transmitted; The wavelength is therefore

$$\lambda = c \cdot T = c/f$$

where c is the speed of light

- Assume $f = 5$ MHz, $\lambda = 60$ m
- A beam which travels 30 m, reflects and returns with 0 phase
- The phase difference for the general case is $\theta \in [0, 2\pi)$
- The ratio $\theta/2\pi$ reflects gives this phase as a proportion of a wavelength
- Hence, the overall distance of travel (both ways) is $\lambda \theta/2\pi$
- The final distance is half the overall distance $D = \lambda \theta/4\pi$
- Theoretically, the same distance measurement would be obtained for any other positive distance nD where n is an integer; In practise the signal attenuates, so we will not likely get a sufficiently strong return for distances larger than D
The laser can be swept in a plane using a rotating mirror to obtain a one-dimensional image of the environment.
The laser can be swept in a plane using a rotating mirror to obtain a one-dimensional image of the environment.

Figure 4.11
(a) Schematic drawing of laser range sensor with rotating mirror; (b) Scanning range sensor from EPS Technologies Inc.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany
The laser can be swept in a plane using a rotating mirror to obtain a one-dimensional image of the environment.

Figure 4.11
(a) Schematic drawing of laser range sensor with rotating mirror; (b) Scanning range sensor from EPS Technologies Inc.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany

3D information can be obtained by pitching the apparatus upwards and downwards.
General principle: We are more confident in measuring large signals than small signals which can get ‘lost in the noise’
General principle: We are more confident in measuring large signals than small signals which can get ‘lost in the noise’

- For laser r-f’s: More confident about bright nearby objects than dark distant objects ones
General principle: We are more confident in measuring large signals than small signals which can get ‘lost in the noise’

- For laser r-f’s: More confident about bright nearby objects than dark distant objects ones
- **General principle:** We are more confident in measuring large signals than small signals which can get ‘lost in the noise’
 - For laser r-f’s: More confident about bright nearby objects than dark distant objects ones
• **General principle:** We are more confident in measuring large signals than small signals which can get ‘lost in the noise’

• For laser r-f’s: More confident about bright nearby objects than dark distant objects ones

\[
\text{Line length} \equiv \text{uncertainty}
\]
General principle: We are more confident in measuring large signals than small signals which can get ‘lost in the noise’

- For laser r-f’s: More confident about bright nearby objects than dark distant objects ones

![Graph showing Line length ≡ uncertainty](image)

- e.g. Characteristics: Hokuyo URG-04LX-UG01
General principle: We are more confident in measuring large signals than small signals which can get ‘lost in the noise’

- For laser r-f’s: More confident about bright nearby objects than dark distant objects ones

![Line length ≡ uncertainty](image)

- e.g. Characteristics: Hokuyo URG-04LX-UG01
 - Angular resolution: 0.36°
General principle: We are more confident in measuring large signals than small signals which can get ‘lost in the noise’

- For laser r-f’s: More confident about bright nearby objects than dark distant objects ones

![Graph showing line length and uncertainty](image)

- Line length \equiv uncertainty

- e.g. Characteristics: Hokuyo URG-04LX-UG01
 - Angular resolution: 0.36°
 - Accuracy: \pm 3 cm
- **General principle:** We are more confident in measuring large signals than small signals which can get ‘lost in the noise’
 - For laser r-f’s: More confident about bright nearby objects than dark distant objects ones

![Graph](image)

Line length ≡ uncertainty

- e.g. Characteristics: Hokuyo URG-04LX-UG01
 - Angular resolution: 0.36°
 - Accuracy: ± 3 cm
 - Angular range: 240°
- **General principle:** We are more confident in measuring large signals than small signals which can get ‘lost in the noise’
 - For laser r-f’s: More confident about bright nearby objects than dark distant objects ones

![Graph showing line length equivalence to uncertainty](image)

- \(\text{Line length} \equiv \text{uncertainty} \)

- e.g. **Characteristics: Hokuyo URG-04LX-UG01**
 - Angular resolution: 0.36°
 - Accuracy: ± 3 cm
 - Angular range: 240°
 - Depth range: 2cm - 5.6 m
General principle: We are more confident in measuring large signals than small signals which can get ‘lost in the noise’

- For laser r-f’s: More confident about bright nearby objects than dark distant objects ones

![Graph with line length equivalent to uncertainty]

Line length ≡ uncertainty

- e.g. **Characteristics: Hokuyo URG-04LX-UG01**
 - Angular resolution: 0.36°
 - Accuracy: ± 3 cm
 - Angular range: 240°
 - Depth range: 2 cm - 5.6 m
 - Bandwidth: 10 Hz
Laser rangefinders are an extremely important sensor in modern autonomous robotics.
Laser rangefinders are an extremely important sensor in modern autonomous robotics.
Laser rangefinders are an extremely important sensor in modern autonomous robotics

“Stanley”, Stanford University’s entry in the 2005 DARPA Grand Challenge