

Quaternion notation	Lecture 7. Quaternions
We can write a quaternion several ways:	Background Definition and properties
$egin{aligned} q &= q_0 + q_1 i + q_2 j + q_3 k \ q &= (q_0, q_1, q_2, q_3) \end{aligned}$	
$q=q_0+{f q}$	
Definition (Scalar part; vector part)	
For quaternion $q_0 + \mathbf{q}$, q_0 is the scalar part and \mathbf{q} is the vector part	
- ロ > - (声 > - (声 > -) を、) やい	

Quaternion product	Lecture 7. Quaternions
We can write a quaternion product several ways:	Overview, motivation Background
$pq = (p_0 + p_1i + p_2j + p_3k)(q_0 + q_1i + q_2j + q_3k)$	Definition and properties
$= (p_0q_0 - p_1q_1 - p_2q_2 - p_3q_3) + \dots i + \dots j + \dots k$	Rotation using unit quaternions
$pq=(p_0+{f p})(q_0+{f q})$	Intuition
$=(ho_0q_0+ ho_0\mathbf{q}+q_0\mathbf{p}+\mathbf{pq})$	Using quaternions to represent rotations
The last product includes many different kinds of product: product of two reals, scalar product of vectors. But what is pq ? Cross product? Dot product? Both! Cross product minus dot product!	Why we love quaternions.
$pq = (p_0q_0 - \mathbf{p}\cdot\mathbf{q} + p_0\mathbf{q} + q_0\mathbf{p} + \mathbf{p} imes\mathbf{q})$	

What do we do with a representation?Leture?
Cuterion?Rotate a point:
$$qxq^*$$
.
Compose two rotations: $q(pxp^*)q^* = (qp)x(qp)^*$ Method is a compose two rotations: $q(pxp^*)q^* = (qp)x(qp)^*$ Distance
Distance
ParticularJust expand the p
 $qxq^* =$
 $(q_0^2 + q_1^2 - q_2^2 - q_2^2)$ Convert to other representations: $q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} \hat{n}$ Distance
 $method is a composed $present composed composed $present composed composed composed $present composed composed c$$

