Unit 2: Mobility Methods of Locomotion

Computer Science 4766/6912

Department of Computer Science Memorial University of Newfoundland

May 14, 2018

COMP 4766/6912 (MUN)

May 14, 2018 2 / 13

Methods of Locomotion

• In nature, we see many varieties of locomotion:

- walking, jumping, running, sliding, skating, swimming, flying, rolling,...
- The wheel is not found in nature, but is highly efficient on flat ground

COMP 4766/6912 (MUN)

Methods of Locomotion

- Advantages:
 - Ability to cross rough terrain (a, c) gaps (b), recover when fallen (d), keep level on uneven surfaces (e) and reduce environmental impact (e).
 - Legs can double as object manipulators
- Disadvantages:
 - Greater power needs, mechanical complexity, and control complexity
- Degrees of freedom:
 - $\bullet \ \geq 2$: one to lift, one to move leg forward

- Stability:
 - A robot with three or more legs exhibits *static stability* if its centre of mass is within the triangle formed by any three legs
 - A 6-legged robot can exhibit static walking by using the "tripod gait" (video)

• Two-legged robots can exhibit only *dynamic stability* (i.e. forces must be applied to maintain balance)

• Advantages:

- Simpler, cheaper, faster, more efficient than legs
- Stability constraint same as for legged robots (centre of mass within the triangle formed by 3 wheels) although the wheels usually stay on the ground
- Disadvantages:
 - Suspension system may be required
 - Restricted to flat terrain (overcome by hybrids such as the Mars rovers)

Wheel designs: Four main types

Figure 2.19

The four basic wheel types. (a) Standard wheel: two degrees of freedom; rotation around the (motorized) wheel axle and the contact point.(b) castor wheel: two degrees of freedom; rotation around an offset steering joint. (c) Swedish wheel: three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers, and around the contact point. (d) Ball or spherical wheel: realization technically difficult.

- Castor wheels differ from standard wheels in that a Castor wheel rotates about an axis which is offset from the centre of the wheel
 - If a force perpendicular to the wheel is applied, the Castor wheel can move to accommodate this force; a standard wheel cannot
- Swedish and spherical wheels can also move to accommodate a force applied at any angle

COMP 4766/6912 (MUN)

Methods of Locomotion

Swedish Wheels

• The small rollers are passive, but provide the ability to role in an *additional* direction

Figure 2.24 The Carnegie Mellon Uranus robot, an omnidirectional robot with four powered-swedish 45 wheels.

ullet The rollers above are at 45° to the wheel axis, those below are at 90°

www.acroname.com/robotics/info/PPRK/overview.html

Wheel Configurations: Notation

Icons for the each wheel type are as follows:				
0	unpowered omnidirectional wheel (spherical, castor, Swedish);			
17273	motorized Swedish wheel (Stanford wheel);			
	unpowered standard wheel;			
-	motorized standard wheel;			
	motorized and steered castor wheel;			
÷	steered standard wheel;			
I	connected wheels.			

A variety of different wheel configurations follow...

Wheel con	figurations for rolling vehi	cles	
# of wheels	Arrangement	Description	Typical examples
2		One steering wheel in the front, one traction wheel in the rear	Bicycle, motorcycle
		Two-wheel differential drive with the center of mass (COM) below the axle	Cye personal robot
3		Two-wheel centered differen- tial drive with a third point of contact	Nomad Scout, smartRob EPFL
		Two independently driven wheels in the rear/front, 1 unpowered omnidirectional wheel in the front/rear	Many indoor robots, including the EPFL robots Pygmalion and Alice
		Two connected traction wheels (differential) in rear, 1 steered free wheel in front	Piaggio minitrucks
		Two free wheels in rear, 1 steered traction wheel in front	Neptune (Carnegie Mellon University), Hero-1
		Three motorized Swedish or spherical wheels arranged in a triangle; omnidirectional move- ment is possible	Stanford wheel Tribolo EPFL, Palm Pilot Robot Kit (CMU)
		Three synchronously motorized and steered wheels; the orienta- tion is not controllable	"Synchro drive" Denning MRV-2, Geor- gia Institute of Technol- ogy, I-Robot B24, Nomad 200

Table 2.1

Table 2.1 Wheel configurations for rolling vehicles

# of wheels	Arrangement	Description	Typical examples
4		Two motorized wheels in the rear, 2 steered wheels in the front; steering has to be differ- ent for the 2 wheels to avoid slipping/skidding.	Car with rear-wheel drive
		Two motorized and steered wheels in the front, 2 free wheels in the rear; steering has to be different for the 2 wheels to avoid slipping/skidding.	Car with front-wheel drive
	II	Four steered and motorized wheels	Four-wheel drive, four- wheel steering Hyperion (CMU)
		Two traction wheels (differen- tial) in rear/front, 2 omnidirec- tional wheels in the front/rear	Charlie (DMT-EPFL)
	17271 17271 17271 17271	Four omnidirectional wheels	Carnegie Mellon Uranus
		Two-wheel differential drive with 2 additional points of con- tact	EPFL Khepera, Hyperbot Chip
		Four motorized and steered castor wheels	Nomad XR4000

- Various criteria impact the utility of a particular configuration:
 - Stability:
 - A 2-wheel robot can exhibit static stability if the centre of mass is below the common axle
 - Otherwise, 3 wheels required
 - Manoeuvrability (addressed in "kinematics")
 - Controllability
 - e.g. Driving a robot with Swedish wheels in a straight line may be difficult; The passive rollers introduce extra slippage; This slippage is hard to compensate for because it is hard to measure