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@ Representing a probability distribution in a grid has inherent
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@ Representing a probability distribution in a grid has inherent
problems:

o Coarse-grained grids inaccurate
e Fine-grained grids expensive
@ Another popular way of representing a probability distribution is to
assume it is a particular distribution (e.g. Gaussian or mixture of
Gaussians — Kalman filter)
@ In Monte Carlo localization we represent a probability distribution
with a set of samples drawn from that distribution
@ The estimation of a sampled representation is known by other names:
particle filters, condensation, “survival of the fittest”

e For a derivation of the algorithm see [Thrun et al., 2005]
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Consider the distribution f given below; A particle filter represents this
distribution by a set of samples randomly drawn from the distribution

2 4 3 a 1.0 12
The samples shown on the bottom are also known as particles

A particle filter is just the application of Bayes filter to estimate a
probability distribution, where that distribution is represented by a set of
samples
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Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot local-
ization.



Monte Carlo localization has the two usual steps of Bayes filter: prediction
and measurement update
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Monte Carlo localization has the two usual steps of Bayes filter: prediction
and measurement update; We will consider prediction first

First some notation:

[

x'™ The mth particle, which represents one guess about the state
Xt (le] has the same dimensionality as x;)

X: The set of particles:

Xt = {xt[ll,x?], e ,XEM]}
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Monte Carlo localization has the two usual steps of Bayes filter: prediction
and measurement update; We will consider prediction first

First some notation:

[

x'™ The mth particle, which represents one guess about the state
Xt (le] has the same dimensionality as x;)

X: The set of particles:
Xt = {Xt[1]7xt[2]v <o 7Xt[‘M]}

where M is the number of particles
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© Particle_Filter_Prediction(X;—_1, u;)
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© Particle_Filter_Prediction(X;—_1, u;)

Q Yt = @
©@ form=1toMdo
©  sample X ~ p(xe[ur, X))
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© Particle_Filter_Prediction(X;—_1, u;)
9 Yt = @

@ form=1to Mdo

() sample le] ~ p(Xt|Ut7X1_[r_n]1)
(5

Yr = Yt + Xt[.m]
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© Particle_Filter_Prediction(X;—_1, u;)
Q0 X:.=0

©@ form=1toMdo

o sample x™ ~ p(xt|ut,x£'f]1)
0 X=X +xm

o

endfor
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© Particle_Filter_Prediction(X;—_1, u;)
9 Yt = @

Q@ form=1to Mdo

(%] sample le] ~ p(xt|ut,x£'f]1)
0 X=X +xm

@ endfor

(7]

return X;
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© Particle_Filter_Prediction(X;—_1, u;)
9 Yt = @

Q@ form=1to Mdo

(4 sample le] ~ p(Xt|ut,X£T]1)
o Xe=Xe+ le]

@ endfor

@ return X,

The set of particles X; represents bel(x;)
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© Particle_Filter_Prediction(X;—_1, u;)
9 Yt = @

Q@ form=1to Mdo

(4 sample le] ~ p(Xt|ut,X£T]1)
0 X=X +xm

@ endfor

@ return X,

The set of particles X; represents bel(x;); But how does this ‘sample’ step
work?
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Consider again the odometry motion model:

Figure 5.7 Odometry model: The robot motion in the time interval (t — 1,1 is ap-
proximated by a rotation drot1, followed by a translation dcsus and a second rotation
Srt2. The turns and translations are noisy.

Previously, we obtained the § parameters from the robot’s movement wuy;
We then obtained the § parameters we would expect for a possible
movement from x;_1 to x¢; Our goal was to estimate p(x¢|us, x¢—1)

Now we wish to sample from p(x¢|us, x¢—1); That is, given a particular u;
and x;_; we want to obtain one possible value for x;, drawn at random
with probability p(x¢|us, x¢—1)

Method: We obtain the § parameters from u; (as before); We then add
random noise to these to generate the § parameters ; Finally, we compute
X¢ as a movement from x;_1 , specified by the § parameters



@ sample_motion_model_odometry(u, x¢—1)
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@ sample_motion_model_odometry(u, x¢—1)
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@ sample_motion_model_odometry(u, x¢—1)
@ Jon =atan2(y -y, X' —x) -0
(s 5trans = \/()_( - )?/)2 + ()7 - }7/)2
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@ sample_motion_model_odometry(u, x¢—1)
Q@ Jrorn = atan2(y —y,x' — %) — 0

Q  drrans = V(X —X)2+ (7 - 7)

Qo 5rot2 = él - 0_ - 5rot1
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@ sample_motion_model_odometry(u, x¢—1)
Q@ o =atan2(y/ —y, X' —X)—0

(3] 5trans = \/()_( - )?/)2 + ()7 - }7/)2

o 5rot2 =0 —0— 5rot1
o

$ _ 2
Orot1 = Orot1 — Sample((f,otl)
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@ sample_motion_model_odometry(u, x¢—1)
Sror1 = atan2(y’ — y, X' —X) — 0
Strans = /(X =X')2 4+ (7 — )2

5rot2 = él - 0_ - 5rot1

5 _ 2
5rot1 - 6rot1 - Sample(arotl)

< _ 2
5trans - 5trans - Sample(atrans)

©0 0600
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@ sample_motion_model_odometry(u, x¢—1)
Sror1 = atan2(y’ — y, X' —X) — 0
Strans = /(X =X')2 4+ (7 — )2

5rot2 = él - 0_ - 5rot1

5rot1 = 6rot1 Sample( rotl)
5trans = 5trans Sample(atrans)

Srot2 = 6rot2 Sample( rot2)

©0 0 0600
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@ sample_motion_model_odometry(u, x¢—1)

© 000 ©00

Sror1 = atan2(y’ — y, X' —X) — 0
5trans = \/()_( - )?/)2 + ()7 - }7/)2
5rot2 =0 —0— 5rot1

5rot1 = 6rot1 Sample( rotl)
5trans = 5trans Sample(atrans)

Srot2 = 6rot2 Sample( rot2)

x'=x+ Strans COS(Q + Srotl)
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@ sample_motion_model_odometry(u, x¢—1)

©0 000 ©00

Sror1 = atan2(y’ — y, X' —X) — 0
5trans = \/()_( - )?/)2 + ()7 - }7/)2
5rot2 =0 —0— 5rot1

5rot1 = 6rot1 Sample( rotl)
5trans = 5trans Sample(atrans)

Srot2 = 6rot2 Sample( rot2)

x'=x+ Strans COS(Q + Srotl)
y/ =y+ Otrans Sin(9 + 6rot1)
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@ sample_motion_model_odometry(u, x¢—1)

600 000 ©00

Sror1 = atan2(y’ — y, X' —X) — 0
5trans = \/()_( - )?/)2 + ()7 - }7/)2
5rot2 =0 —0— 5rot1

5rot1 = 6rot1 Sample( rotl)
5trans = 5trans Sample(atrans)

Srot2 = 6rot2 Sample( rot2)

x'=x+ Strans COS(Q + Srotl)
y/ =y+ Otrans Sin(9 + 6rot1)
¢ =0 + 5rot1 + (5rot2
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@ sample_motion_model_odometry(u, x¢—1)

®©®6 00 000 ©000O0

Sror1 = atan2(y’ — y, X' —X) — 0
5trans = \/()_( - )?/)2 + ()7 - }7/)2
5rot2 =0 —0— 5rot1

5rot1 = 6rot1 Sample( rotl)
5trans = 5trans Sample(gtrans)

SrotZ = 6rot2 Sample( rot2)

X' = X + btrans c05(0 + dror1)
y=y+ dtrans sin(0 + Srotl)
0" = 0+ brot1 + dror2

return x; = (x',y',0')7
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@ sample_motion_model_odometry(u, x¢—1)

@ Jron =atan2(y —y, & — %) -0
(3] 5trans = \/()_( - )?/)2 + ()7 - }7/)2
Qo 5rot2 =0 —0— 5rot1
e Srotl = 6rot1 Sample( rotl)
0 5trans = 5trans Sample(gtrans)
0 5rot2 — 5rot2 Sample( rot2)
Q X' =x+ Strans COS(H + Srotl)
Q y’ =y+ Otrans Sin(9 + (5rot1)
@ 9/ =40 + 5rot1 + (5rot2
@ return x; = (X, y,0)7
where sample(c?) draws a random value from a Gaussian distribution with
variance o2
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Shown below are 500 samples obtained from
sample_motion_model_odometry using three different sets of alpha
parameters,
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Shown below are 500 samples obtained from
sample_motion_model_odometry using three different sets of alpha
parameters,

@

Figure 5.9 Sampling from the odometry motion model, using the same parameters
as in Figure 5.8. Each diagram shows 500 samples.
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The algorithm Particle_Filter_Prediction uses sampling to produce the new
set of particles X; from the old set X;_1
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The algorithm Particle_Filter_Prediction uses sampling to produce the new
set of particles X; from the old set X;_1

In the limit as M — oo the distribution of X; will approximate bel(x;); For
finite M this is only an approximation

To obtain bel(x;) we must take measurements into account; This is

accomplished by giving each particle, x/™, a weight of p(z|x\™)
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The algorithm Particle_Filter_Prediction uses sampling to produce the new
set of particles X; from the old set X;_1

In the limit as M — oo the distribution of X; will approximate bel(x;); For
finite M this is only an approximation

To obtain bel(x;) we must take measurements into account; This is

accomplished by giving each particle, xlm], a weight of p(zt|x£m]); We then
randomly select the new particle set X; from X; by picking M particles at
random with the probability of each particle being selected as proportional

to its weight wt[m]
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The algorithm Particle_Filter_Prediction uses sampling to produce the new
set of particles X; from the old set X;_1

In the limit as M — oo the distribution of X; will approximate bel(x;); For
finite M this is only an approximation

To obtain bel(x;) we must take measurements into account; This is

accomplished by giving each particle, xlm], a weight of p(zt|x£m]); We then
randomly select the new particle set X; from X; by picking M particles at
random with the probability of each particle being selected as proportional

to its weight wt[m]

Incorporating this step yields the full particle filter algorithm...
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Particle Filter Algorithm
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Q@ form=1to Mdo

o sample x/™ ~ p(xt]ut,xi'f]l)



Particle Filter Algorithm

(1] PaLticle,FiIter(Xt_l, Ut, Zt)
Q@ Xi=Xi=10

@ form=1to Mdo
o sample x/™ ~ p(xt]ut,xi'f]l)
@  w" =p(zlx™)



Particle Filter Algorithm

(1] PaLticle,FiIter(Xt_l, Ut, Zt)
Q@ Xi=Xi=10
form=1to M do
le xI™ ~ [m]
sample x; p(xe|ue, x;—7)

(3]
Q

[m] _ [m]
o wy = p(ze|x; )
(6] Xe =X + <le], Wt[m]>



Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)
Xe=Xe =0
form=1to M do
sample le] ~ p(xt]ut,xi'f]l)
wi™ = p(ze[x™)
X:=X: + <le], Wt[m]>

endfor
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Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)
Xe=Xe =0
form=1to M do
sample le] ~ p(xt]ut,xi'f]l)
wi™ = p(ze[x™)
X:=X: + <le], Wt[m]>
endfor
form=1to M do

©0 00000



Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)
Xe=Xe =0
form=1to M do
sample le] ~ p(xt]ut,xi'f]l)
wi™ = p(ze[x™)
X:=X: + <le], Wt[m]>
endfor
form=1to M do

draw i with probability oc w}”
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Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)
Xe=Xe =0
form=1to M do
sample le] ~ p(xt]ut,xi'f]l)
wi™ = p(zex{™)
X:=X: + <le], Wt[m]>
endfor
form=1to M do
draw i with probability oc w}”
add xt[i] to X

600000000



Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)
Xe=Xe =0
form=1to M do
sample le] ~ p(xt]ut,xi'f]l)
wi™ = p(zex{™)
X:=X: + <le], Wt[m]>
endfor
form=1to M do
draw i with probability oc w}”
add xt[i] to X
endfor

©6 00000000



Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)

Q@ X:=X,=0

@ form=1toMdo

(4] sample x™ ~ p(x|ue, xI™)
0 w=pal™)

5) Xe=Xe+ <le]’ Wt[m]>

@ endfor

Q@ form=1toMdo

©  draw i with probability oc w)”
(10] add xt[i] to X

@ endfor

@

return X;



Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)
Xe=Xe =0
form=1to M do
sample xt[m] ~ p(xt]ut,xi'f]l)
wi™ = p(zex{™)
X:=X: + <le], Wt[m]>
endfor
form=1to M do
draw i with probability oc w}”
add xt[i] to X
endfor
return X;

6600000000

The weight Wt[m] gives each particle its “chance of survival” into the next

particle set



Particle Filter Algorithm

@ Particle_Filter(X:—1, ut, z¢)
yt — Xt — Q)
form=1to M do
sample x™ ~ p(x|ue, xI™)
[m] ( |X[m])
Xt Xt‘|'< [mlvwi.[ ]>
endfor
form=1to M do
draw i with probability oc w;
add xt[] to X
endfor
return X;

[m]

The weight w; - gives each particle its “chance of survival” into the next
particle set; Particles with high weight represent robot poses which appear
similar to the robot's current sensory observation

(7]
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How do we “draw i with probability oc w;
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How do we “draw i with probability o w."; Here i is the ith particle; The
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From the particles in the prediction step, X;, we select M particles to go
into X;; Often we will get many copies of the same particle carrying over
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The second for loop in the particle filter implements resampling;:

e form=1to M do

o  draw i with probability oc w)”
o add x to X,

e endfor

From the particles in the prediction step, X;, we select M particles to go
into X;; Often we will get many copies of the same particle carrying over
into X¢; Thus, resampling reduces diversity and focusses particles on areas
of the state space where bel(x;) is large
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Examples:

@ Revisit figure 8.11
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Examples:

@ Revisit figure 8.11
o video: particleFilter.avi

Issues of MCL:

o Particle deprivation occurs when there are no particles in the
vicinity of the robot’s true pose

@ The prediction step increases diversity, while resampling reduces it; It
may be advantageous to reduce the frequency of resampling to
prevent particle deprivation

o If M is large particle deprivation is less likely (still possible) but the
computational expense may be high; If M is small then particle
deprivation is more likely, but the computational expense will be lower

@ Particle deprivation can also be addressed by the addition of random
particles; This has the added benefit of solving the kidnapped robot
problem (if one of the random particles is close enough to the
location of the kidnapped robot)
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Particle filters are very popular. Why?

@ The particles in MCL can accomodate complex multi-modal probabilty
distributions, thus supporting multi-hypothesis belief representation
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Particle filters are very popular. Why?

@ The particles in MCL can accomodate complex multi-modal probabilty
distributions, thus supporting multi-hypothesis belief representation

@ The fact that the motion and measurement models represent
non-linear functions is not problematic (as it is for the Kalman filter)

@ We can tradeoff computational complexity for accuracy by varying the
number of particles

@ They are (relatively) easy to implement!
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