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Representing a probability distribution in a grid has inherent
problems:

Coarse-grained grids inaccurate
Fine-grained grids expensive

Another popular way of representing a probability distribution is to
assume it is a particular distribution (e.g. Gaussian or mixture of
Gaussians → Kalman filter)

In Monte Carlo localization we represent a probability distribution
with a set of samples drawn from that distribution

The estimation of a sampled representation is known by other names:
particle filters, condensation, “survival of the fittest”

For a derivation of the algorithm see [Thrun et al., 2005]
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Consider the distribution f given below

; A particle filter represents this
distribution by a set of samples randomly drawn from the distribution

The samples shown on the bottom are also known as particles

A particle filter is just the application of Bayes filter to estimate a
probability distribution, where that distribution is represented by a set of
samples
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Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot local-

ization.



Monte Carlo localization has the two usual steps of Bayes filter: prediction
and measurement update

; We will consider prediction first

First some notation:

x
[m]
t The mth particle, which represents one guess about the state

xt (x
[m]
t has the same dimensionality as xt)

Xt The set of particles:

Xt =
{
x
[1]
t , x

[2]
t , . . . , x

[M]
t

}
where M is the number of particles
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Prediction

1 Particle Filter Prediction(Xt−1, ut)

2 X t = ∅
3 for m = 1 to M do

4 sample x
[m]
t ∼ p(xt |ut , x [m]

t−1)

5 X t = X t + x
[m]
t

6 endfor

7 return X t

The set of particles X t represents bel(xt); But how does this ‘sample’ step
work?
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Consider again the odometry motion model:

δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is ap-

proximated by a rotation δrot1, followed by a translation δtrans and a second rotation

δrot2. The turns and translations are noisy.

Previously, we obtained the δ parameters from the robot’s movement ut ;
We then obtained the δ̂ parameters we would expect for a possible
movement from xt−1 to xt ; Our goal was to estimate p(xt |ut , xt−1)

Now we wish to sample from p(xt |ut , xt−1); That is, given a particular ut
and xt−1 we want to obtain one possible value for xt , drawn at random
with probability p(xt |ut , xt−1)

Method: We obtain the δ parameters from ut (as before); We then add
random noise to these to generate the δ̂ parameters ; Finally, we compute
xt as a movement from xt−1 , specified by the δ̂ parameters
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Previously, we obtained the δ parameters from the robot’s movement ut ;
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movement from xt−1 to xt ; Our goal was to estimate p(xt |ut , xt−1)

Now we wish to sample from p(xt |ut , xt−1); That is, given a particular ut
and xt−1 we want to obtain one possible value for xt , drawn at random
with probability p(xt |ut , xt−1)
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1 sample motion model odometry(ut , xt−1)

2 δrot1 = atan2(ȳ ′ − ȳ , x̄ ′ − x̄)− θ̄
3 δtrans =

√
(x̄ − x̄ ′)2 + (ȳ − ȳ ′)2

4 δrot2 = θ̄′ − θ̄ − δrot1

5 δ̂rot1 = δrot1 − sample(σ2rot1)

6 δ̂trans = δtrans − sample(σ2trans)

7 δ̂rot2 = δrot2 − sample(σ2rot2)

8 x ′ = x + δ̂trans cos(θ + δ̂rot1)

9 y ′ = y + δ̂trans sin(θ + δ̂rot1)

10 θ′ = θ + δ̂rot1 + δ̂rot2
11 return xt = (x ′, y ′, θ′)T

where sample(σ2) draws a random value from a Gaussian distribution with
variance σ2
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4 δrot2 = θ̄′ − θ̄ − δrot1

5 δ̂rot1 = δrot1 − sample(σ2rot1)

6 δ̂trans = δtrans − sample(σ2trans)

7 δ̂rot2 = δrot2 − sample(σ2rot2)

8 x ′ = x + δ̂trans cos(θ + δ̂rot1)

9 y ′ = y + δ̂trans sin(θ + δ̂rot1)

10 θ′ = θ + δ̂rot1 + δ̂rot2
11 return xt = (x ′, y ′, θ′)T

where sample(σ2) draws a random value from a Gaussian distribution with
variance σ2

COMP 4766/6912 (MUN) Localization June 11, 2018 8 / 16



1 sample motion model odometry(ut , xt−1)
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3 δtrans =

√
(x̄ − x̄ ′)2 + (ȳ − ȳ ′)2
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Shown below are 500 samples obtained from
sample motion model odometry using three different sets of alpha
parameters,

(a) (b) (c)

Figure 5.9 Sampling from the odometry motion model, using the same parameters

as in Figure 5.8. Each diagram shows 500 samples.
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The algorithm Particle Filter Prediction uses sampling to produce the new
set of particles X t from the old set X t−1

In the limit as M →∞ the distribution of X t will approximate bel(xt); For
finite M this is only an approximation

To obtain bel(xt) we must take measurements into account; This is

accomplished by giving each particle, x
[m]
t , a weight of p(zt |x [m]

t ); We then
randomly select the new particle set Xt from X t by picking M particles at
random with the probability of each particle being selected as proportional

to its weight w
[m]
t

Incorporating this step yields the full particle filter algorithm...
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Particle Filter Algorithm

1 Particle Filter(Xt−1, ut , zt)

2 X t = Xt = ∅
3 for m = 1 to M do
4 sample x

[m]
t ∼ p(xt |ut , x [m]

t−1)

5 w
[m]
t = p(zt |x [m]

t )

6 X t = X t +
〈
x
[m]
t ,w

[m]
t

〉
7 endfor
8 for m = 1 to M do
9 draw i with probability ∝ w

[i ]
t

10 add x
[i ]
t to Xt

11 endfor
12 return Xt

The weight w
[m]
t gives each particle its “chance of survival” into the next

particle set; Particles with high weight represent robot poses which appear
similar to the robot’s current sensory observation
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How do we “draw i with probability ∝ w
[i ]
t ”

; Here i is the i th particle; The
easiest method is known as roulette wheel selection; Imagine a roulette
wheel with the size of different segments of the wheel set by the weights,
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The second for loop in the particle filter implements resampling:

for m = 1 to M do

draw i with probability ∝ w
[i ]
t

add x
[i ]
t to Xt

endfor

From the particles in the prediction step, X t , we select M particles to go
into Xt ; Often we will get many copies of the same particle carrying over
into Xt ; Thus, resampling reduces diversity and focusses particles on areas
of the state space where bel(xt) is large
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Examples:

Revisit figure 8.11

video: particleFilter.avi

Issues of MCL:

Particle deprivation occurs when there are no particles in the
vicinity of the robot’s true pose

The prediction step increases diversity, while resampling reduces it; It
may be advantageous to reduce the frequency of resampling to
prevent particle deprivation

If M is large particle deprivation is less likely (still possible) but the
computational expense may be high; If M is small then particle
deprivation is more likely, but the computational expense will be lower

Particle deprivation can also be addressed by the addition of random
particles; This has the added benefit of solving the kidnapped robot
problem (if one of the random particles is close enough to the
location of the kidnapped robot)
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Particle filters are very popular. Why?

The particles in MCL can accomodate complex multi-modal probabilty
distributions, thus supporting multi-hypothesis belief representation

The fact that the motion and measurement models represent
non-linear functions is not problematic (as it is for the Kalman filter)

We can tradeoff computational complexity for accuracy by varying the
number of particles

They are (relatively) easy to implement!
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