Unit 4: Localization Part 3
Motion and Measurement Models + Grid Localization

Computer Science 4766/6912

Department of Computer Science
Memorial University of Newfoundland

June 29, 2018
1. Odometry Motion Model

2. Measurement Model

3. Grid Localization
We require a general motion model to apply Bayes filter to mobile robot localization.
Odometry Motion Model: $p(x_t | u_t, x_{t-1})$

- We require a general motion model to apply Bayes filter to mobile robot localization.
- The motion model described here (from [Thrun et al., 2005]) is based on odometry.

We employ the difference between the current odometry pose vector \bar{x}_t and the last odometry pose vector \bar{x}_{t-1}:

$$\bar{x}_t - \bar{x}_{t-1} = [\bar{x}'_t, \bar{y}'_t, \bar{\theta}'_t]^T$$

Define the control or action as,

$$u_t = [\bar{x}'_t, \bar{x}_t]^T$$

The difference between \bar{x}_t and \bar{x}_{t-1} is a good estimate of the difference between x_t and x_{t-1}.
Odometry Motion Model: $p(x_t | u_t, x_{t-1})$

- We require a general motion model to apply Bayes filter to mobile robot localization.
- The motion model described here (from [Thrun et al., 2005]) is based on odometry.
- Odometry gives a direct estimate of position → unfortunately this estimate exhibits cumulative error.
We require a general motion model to apply Bayes filter to mobile robot localization.

The motion model described here (from [Thrun et al., 2005]) is based on odometry.

Odometry gives a direct estimate of position → unfortunately this estimate exhibits cumulative error.

We employ the difference between the current odometry pose vector \bar{x}_t and the last odometry pose vector \bar{x}_{t-1}.
Odometry Motion Model: \(p(x_t | u_t, x_{t-1}) \)

- We require a general motion model to apply Bayes filter to mobile robot localization.
- The motion model described here (from [Thrun et al., 2005]) is based on odometry.
- Odometry gives a direct estimate of position → unfortunately this estimate exhibits cumulative error.
- We employ the difference between the current odometry pose vector \(\bar{x}_t \) and the last odometry pose vector \(\bar{x}_{t-1} \).
Odometry Motion Model: $p(x_t \mid u_t, x_{t-1})$

- We require a general motion model to apply Bayes filter to mobile robot localization.
- The motion model described here (from [Thrun et al., 2005]) is based on odometry.
- Odometry gives a direct estimate of position → unfortunately this estimate exhibits cumulative error.
- We employ the difference between the current odometry pose vector \bar{x}_t and the last odometry pose vector \bar{x}_{t-1}

$$\bar{x}_t = [\bar{x}', \bar{y}', \bar{\theta}']^T \quad \bar{x}_{t-1} = [\bar{x}, \bar{y}, \bar{\theta}]^T$$
Odometry Motion Model: $p(x_t | u_t, x_{t-1})$

- We require a general motion model to apply Bayes filter to mobile robot localization.
- The motion model described here (from [Thrun et al., 2005]) is based on odometry.
- Odometry gives a direct estimate of position \rightarrow unfortunately this estimate exhibits cumulative error.
- We employ the difference between the current odometry pose vector \bar{x}_t and the last odometry pose vector \bar{x}_{t-1}
 \[\bar{x}_t = [\bar{x}', \bar{y}', \bar{\theta}']^T \quad \bar{x}_{t-1} = [\bar{x}, \bar{y}, \bar{\theta}]^T \]

- Define the control or action as,
Odometry Motion Model: $p(x_t | u_t, x_{t-1})$

- We require a general motion model to apply Bayes filter to mobile robot localization.
- The motion model described here (from [Thrun et al., 2005]) is based on odometry.
- Odometry gives a direct estimate of position → unfortunately this estimate exhibits cumulative error.
- We employ the difference between the current odometry pose vector \bar{x}_t and the last odometry pose vector \bar{x}_{t-1}

\[
\bar{x}_t = [\bar{x}', \bar{y}', \bar{\theta}']^T \\
\bar{x}_{t-1} = [\bar{x}, \bar{y}, \bar{\theta}]^T
\]

- Define the control or action as,
Odometry Motion Model: \(p(x_t | u_t, x_{t-1}) \)

- We require a general motion model to apply Bayes filter to mobile robot localization.
- The motion model described here (from [Thrun et al., 2005]) is based on odometry.
- Odometry gives a direct estimate of position → unfortunately this estimate exhibits cumulative error.
- We employ the difference between the current odometry pose vector \(\bar{x}_t \) and the last odometry pose vector \(\bar{x}_{t-1} \)

\[
\bar{x}_t = [\bar{x}', \bar{y}', \bar{\theta}']^T \quad \bar{x}_{t-1} = [\bar{x}, \bar{y}, \bar{\theta}]^T
\]

- Define the control or action as,

\[
u_t = [\bar{x}_{t-1}, \bar{x}_t]^T
\]
We require a general motion model to apply Bayes filter to mobile robot localization.

The motion model described here (from [Thrun et al., 2005]) is based on odometry.

Odometry gives a direct estimate of position → unfortunately this estimate exhibits cumulative error.

We employ the difference between the current odometry pose vector \bar{x}_t and the last odometry pose vector \bar{x}_{t-1}

$$\bar{x}_t = [\bar{x}', \bar{y}', \bar{\theta}']^T \quad \bar{x}_{t-1} = [\bar{x}, \bar{y}, \bar{\theta}]^T$$

Define the control or action as,

$$u_t = [\bar{x}_{t-1}, \bar{x}_t]^T$$

The difference between \bar{x}_t and \bar{x}_{t-1} is a good estimate of the difference between x_t and x_{t-1}.
We transform u_t into a sequence of three steps:
We transform u_t into a sequence of three steps:

- An initial rotation of angle δ_{rot1}
We transform u_t into a sequence of three steps:

- An initial rotation of angle $\delta_{\text{rot}1}$
- A translation of length δ_{trans}

Figure 5.7 Odometry model: The robot motion in the time interval $(t - 1, t]$ is approximated by a rotation $\delta_{\text{rot}1}$, followed by a translation δ_{trans} and a second rotation $\delta_{\text{rot}2}$. The turns and translations are noisy.
We transform u_t into a sequence of three steps:

- An initial rotation of angle δ_{rot1}
- A translation of length δ_{trans}
- A final rotation of angle δ_{rot2}
We transform u_t into a sequence of three steps:

- An initial rotation of angle δ_{rot1}
- A translation of length δ_{trans}
- A final rotation of angle δ_{rot2}
We transform u_t into a sequence of three steps:

- An initial rotation of angle δ_{rot1}
- A translation of length δ_{trans}
- A final rotation of angle δ_{rot2}

Figure 5.7 Odometry model: The robot motion in the time interval $(t - 1, t]$ is approximated by a rotation δ_{rot1}, followed by a translation δ_{trans} and a second rotation δ_{rot2}. The turns and translations are noisy.
We transform u_t into a sequence of three steps:

- An initial rotation of angle δ_{rot1}
- A translation of length δ_{trans}
- A final rotation of angle δ_{rot2}

![Diagram showing the odometry model with δ_{rot1}, δ_{trans}, and δ_{rot2}]

Figure 5.7 Odometry model: The robot motion in the time interval $(t - 1, t]$ is approximated by a rotation δ_{rot1}, followed by a translation δ_{trans} and a second rotation δ_{rot2}. The turns and translations are noisy.

We model the robot’s motion using these three parameters.
We transform u_t into a sequence of three steps:

- An initial rotation of angle δ_{rot1}
- A translation of length δ_{trans}
- A final rotation of angle δ_{rot2}

Figure 5.7 Odometry model: The robot motion in the time interval $(t - 1, t]$ is approximated by a rotation δ_{rot1}, followed by a translation δ_{trans} and a second rotation δ_{rot2}. The turns and translations are noisy.

We model the robot’s motion using these three parameters; Yet the actual motion may have been quite different (e.g. rotating while translating)
Given $u_t = [\bar{x}_{t-1}, \bar{x}_t]^T$ we can derive δ_{rot1}, δ_{trans}, and δ_{rot2} via simple geometry.

$\delta_{rot1} = \text{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$

$\delta_{trans} = \sqrt{(\bar{x} - \bar{x}')^2 + (\bar{y} - \bar{y}')^2}$

$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$
Given \(u_t = [\bar{x}_{t-1}, \bar{x}_t]^T \) we can derive \(\delta_{rot1}, \delta_{trans}, \) and \(\delta_{rot2} \) via simple geometry.

COVERED ON BOARD
Given \(u_t = [\bar{x}_{t-1}, \bar{x}_t]^T \) we can derive \(\delta_{rot1}, \delta_{trans}, \) and \(\delta_{rot2} \) via simple geometry.

COVERED ON BOARD

\[
\delta_{rot1} = \text{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}
\]
Given \(u_t = [\bar{x}_{t-1}, \bar{x}_t]^T \) we can derive \(\delta_{\text{rot}1}, \delta_{\text{trans}}, \) and \(\delta_{\text{rot}2} \) via simple geometry.

COVERED ON BOARD

\[
\begin{align*}
\delta_{\text{rot}1} &= \text{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta} \\
\delta_{\text{trans}} &= \sqrt{(\bar{x} - \bar{x}')^2 + (\bar{y} - \bar{y}')^2}
\end{align*}
\]
Given \(u_t = [\tilde{x}_{t-1}, \tilde{x}_t]^T \) we can derive \(\delta_{rot1}, \delta_{trans}, \) and \(\delta_{rot2} \) via simple geometry.

COVERED ON BOARD

\[
\begin{align*}
\delta_{rot1} &= \text{atan2}(\tilde{y}' - \tilde{y}, \tilde{x}' - \tilde{x}) - \bar{\theta} \\
\delta_{trans} &= \sqrt{(\tilde{x} - \tilde{x}')^2 + (\tilde{y} - \tilde{y}')^2} \\
\delta_{rot2} &= \bar{\theta}' - \bar{\theta} - \delta_{rot1}
\end{align*}
\]
Given \(u_t = [\bar{x}_{t-1}, \bar{x}_t]^T \) we can derive \(\delta_{rot1}, \delta_{trans}, \) and \(\delta_{rot2} \) via simple geometry.

COVERED ON BOARD

\[
\begin{align*}
\delta_{rot1} &= \text{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta} \\
\delta_{trans} &= \sqrt{(\bar{x} - \bar{x}')^2 + (\bar{y} - \bar{y}')^2} \\
\delta_{rot2} &= \bar{\theta}' - \bar{\theta} - \delta_{rot1}
\end{align*}
\]
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\delta_{\text{true}}^{\text{rot}1} = \delta_{\text{rot}1} - \epsilon_{\text{rot}1}
\]

\[
\delta_{\text{true}}^{\text{trans}} = \delta_{\text{trans}} - \epsilon_{\text{trans}}
\]

\[
\delta_{\text{true}}^{\text{rot}2} = \delta_{\text{rot}2} - \epsilon_{\text{rot}2}
\]
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\delta_{\text{true}}^{\text{rot}1} = \delta_{\text{rot}1} - \epsilon_{\text{rot}1}
\]

\[
\delta_{\text{true}}^{\text{trans}} = \sqrt{(x - x')^2 + (y - y')^2}
\]

\[
\delta_{\text{true}}^{\text{rot}2} = \theta' - \theta - \hat{\delta}_{\text{rot}1}
\]
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta_{\text{true\ rot}}^{\text{rot1}} &= \delta_{\text{rot1}} - \epsilon_{\text{rot1}} \\
\delta_{\text{true\ trans}} &= \delta_{\text{trans}} - \epsilon_{\text{trans}}
\end{align*}
\]
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta_{\text{true rot} 1} &= \delta_{\text{rot} 1} - \epsilon_{\text{rot} 1} \\
\delta_{\text{true trans}} &= \delta_{\text{trans}} - \epsilon_{\text{trans}} \\
\delta_{\text{true rot} 2} &= \delta_{\text{rot} 2} - \epsilon_{\text{rot} 2}
\end{align*}
\]
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta_{\text{true rot1}} &= \delta_{\text{rot1}} - \epsilon_{\text{rot1}} \\
\delta_{\text{true trans}} &= \delta_{\text{trans}} - \epsilon_{\text{trans}} \\
\delta_{\text{true rot2}} &= \delta_{\text{rot2}} - \epsilon_{\text{rot2}}
\end{align*}
\]

where the three \(\epsilon \)'s are Normal random variables assumed to have zero mean.
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta_{\text{rot}1}^{\text{true}} & = \delta_{\text{rot}1} - \epsilon_{\text{rot}1} \\
\delta_{\text{trans}}^{\text{true}} & = \delta_{\text{trans}} - \epsilon_{\text{trans}} \\
\delta_{\text{rot}2}^{\text{true}} & = \delta_{\text{rot}2} - \epsilon_{\text{rot}2}
\end{align*}
\]

where the three ϵ's are Normal random variables assumed to have zero mean.

We don’t know these true parameters.
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta_{\text{rot1}}^{\text{true}} &= \delta_{\text{rot1}} - \epsilon_{\text{rot1}} \\
\delta_{\text{trans}}^{\text{true}} &= \delta_{\text{trans}} - \epsilon_{\text{trans}} \\
\delta_{\text{rot2}}^{\text{true}} &= \delta_{\text{rot2}} - \epsilon_{\text{rot2}}
\end{align*}
\]

where the three \(\epsilon \)'s are Normal random variables assumed to have zero mean.

We don’t know these true parameters. But given a pair of poses \(x_t \) and \(x_{t-1} \) we can compute the parameters we would expect
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta_{\text{true\ rot1}} &= \delta_{\text{rot1}} - \epsilon_{\text{rot1}} \\
\delta_{\text{true\ trans}} &= \delta_{\text{trans}} - \epsilon_{\text{trans}} \\
\delta_{\text{true\ rot2}} &= \delta_{\text{rot2}} - \epsilon_{\text{rot2}}
\end{align*}
\]

where the three \(\epsilon \)'s are Normal random variables assumed to have zero mean.

We don’t know these true parameters. But given a pair of poses \(x_t \) and \(x_{t-1} \) we can compute the parameters we would expect

\[
x_t = [x', y', \theta']^T \quad x_{t-1} = [x, y, \theta]^T
\]
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta^\text{true}_{\text{rot1}} &= \delta_{\text{rot1}} - \epsilon_{\text{rot1}} \\
\delta^\text{true}_{\text{trans}} &= \delta_{\text{trans}} - \epsilon_{\text{trans}} \\
\delta^\text{true}_{\text{rot2}} &= \delta_{\text{rot2}} - \epsilon_{\text{rot2}}
\end{align*}
\]

where the three \(\epsilon\)'s are Normal random variables assumed to have zero mean.

We don’t know these true parameters. But given a pair of poses \(x_t\) and \(x_{t-1}\) we can compute the parameters we would expect

\[
x_t = [x', y', \theta']^T \quad x_{t-1} = [x, y, \theta]^T
\]

\[
\hat{\delta}_{\text{rot1}} = \text{atan2}(y' - y, x' - x) - \theta
\]
We assume that these measured values are corrupted by independent noise, such that the true values are given as follows,

\[
\begin{align*}
\delta_{\text{rot}1}^{\text{true}} &= \delta_{\text{rot}1} - \epsilon_{\text{rot}1} \\
\delta_{\text{trans}}^{\text{true}} &= \delta_{\text{trans}} - \epsilon_{\text{trans}} \\
\delta_{\text{rot}2}^{\text{true}} &= \delta_{\text{rot}2} - \epsilon_{\text{rot}2}
\end{align*}
\]

where the three \(\epsilon \)'s are Normal random variables assumed to have zero mean.

We don’t know these true parameters. But given a pair of poses \(x_t \) and \(x_{t-1} \) we can compute the parameters we would expect

\[
\begin{align*}
x_t &= [x', y', \theta']^T \\
x_{t-1} &= [x, y, \theta]^T
\end{align*}
\]

\[
\begin{align*}
\hat{\delta}_{\text{rot}1} &= \text{atan2}(y' - y, x' - x) - \theta \\
\hat{\delta}_{\text{trans}} &= \sqrt{(x - x')^2 + (y - y')^2}
\end{align*}
\]
We assume that these *measured values* are corrupted by independent noise, such that the true values are given as follows,

\[
\delta^{\text{true}}_{\text{rot}1} = \delta_{\text{rot}1} - \epsilon_{\text{rot}1}
\]
\[
\delta^{\text{true}}_{\text{trans}} = \delta_{\text{trans}} - \epsilon_{\text{trans}}
\]
\[
\delta^{\text{true}}_{\text{rot}2} = \delta_{\text{rot}2} - \epsilon_{\text{rot}2}
\]

where the three \(\epsilon\)'s are Normal random variables assumed to have zero mean.

We don’t know these true parameters. But given a pair of poses \(x_t\) and \(x_{t-1}\) we can compute the parameters we would expect

\[
x_t = [x', y', \theta']^T \\
x_{t-1} = [x, y, \theta]^T
\]

\[
\hat{\delta}_{\text{rot}1} = \text{atan2}(y' - y, x' - x) - \theta
\]
\[
\hat{\delta}_{\text{trans}} = \sqrt{(x - x')^2 + (y - y')^2}
\]
\[
\hat{\delta}_{\text{rot}2} = \theta' - \theta - \hat{\delta}_{\text{rot}1}
\]
In order to work out the probability of a given movement, we need to know the variance of the noise processes, ϵ_{rot1}, ϵ_{trans}, and ϵ_{rot2}. We utilize the equations below to model the relationship between the amount of motion and the amount of uncertainty:

\[
\sigma^2_{rot1} = \alpha_1 \delta^2_{rot1} + \alpha_2 \delta^2_{trans}
\]

\[
\sigma^2_{trans} = \alpha_3 \delta^2_{trans} + \alpha_4 (\delta^2_{rot1} + \delta^2_{rot2})
\]

\[
\sigma^2_{rot2} = \alpha_1 \delta^2_{rot2} + \alpha_2 \delta^2_{trans}
\]

where the α parameters specify the noise characteristics of a particular robot (to be determined experimentally).

Note: This model differs from the book which relates the σ quantities to the $\hat{\delta}$ quantities.
In order to work out the probability of a given movement, we need to know the variance of the noise processes, $\epsilon_{\text{rot}1}$, ϵ_{trans}, and $\epsilon_{\text{rot}2}$. We assume that the amount of noise is proportional to the amount of movement, as measured by odometry.
In order to work out the probability of a given movement, we need to know the variance of the noise processes, ϵ_{rot1}, ϵ_{trans}, and ϵ_{rot2}. We assume that the amount of noise is proportional to the amount of movement, as measured by odometry.

We utilize the equations below to model the relationship between the amount of motion and the amount of uncertainty:

\[
\begin{align*}
\sigma^2_{rot1} &= \alpha_1 \delta^2_{rot1} + \alpha_2 \delta^2_{trans} \\
\sigma^2_{trans} &= \alpha_3 \delta^2_{trans} + \alpha_4 (\delta^2_{rot1} + \delta^2_{rot2}) \\
\sigma^2_{rot2} &= \alpha_1 \delta^2_{rot2} + \alpha_2 \delta^2_{trans}
\end{align*}
\]

where the α parameters specify the noise characteristics of a particular robot (to be determined experimentally).

Note: This model differs from the book which relates the σ quantities to the $\hat{\delta}$ quantities.
In order to work out the probability of a given movement, we need to know the variance of the noise processes, \(\epsilon_{rot1} \), \(\epsilon_{trans} \), and \(\epsilon_{rot2} \). We assume that the amount of noise is proportional to the amount of movement, as measured by odometry.

We utilize the equations below to model the relationship between the amount of motion and the amount of uncertainty:

\[
\begin{align*}
\sigma^2_{rot1} &= \alpha_1 \delta^2_{rot1} + \alpha_2 \delta^2_{trans} \\
\sigma^2_{trans} &= \alpha_3 \delta^2_{trans} + \alpha_4 (\delta^2_{rot1} + \delta^2_{rot2}) \\
\sigma^2_{rot2} &= \alpha_1 \delta^2_{rot2} + \alpha_2 \delta^2_{trans}
\end{align*}
\]
In order to work out the probability of a given movement, we need to know the variance of the noise processes, $\epsilon_{\text{rot}1}$, ϵ_{trans}, and $\epsilon_{\text{rot}2}$. We assume that the amount of noise is proportional to the amount of movement, as measured by odometry.

We utilize the equations below to model the relationship between the amount of motion and the amount of uncertainty:

\[
\begin{align*}
\sigma^2_{\text{rot}1} &= \alpha_1 \delta^2_{\text{rot}1} + \alpha_2 \delta^2_{\text{trans}} \\
\sigma^2_{\text{trans}} &= \alpha_3 \delta^2_{\text{trans}} + \alpha_4 (\delta^2_{\text{rot}1} + \delta^2_{\text{rot}2}) \\
\sigma^2_{\text{rot}2} &= \alpha_1 \delta^2_{\text{rot}2} + \alpha_2 \delta^2_{\text{trans}}
\end{align*}
\]

where the α parameters specify the noise characteristics of a particular robot (to be determined experimentally).
In order to work out the probability of a given movement, we need to know the variance of the noise processes, ϵ_{rot1}, ϵ_{trans}, and ϵ_{rot2}. We assume that the amount of noise is proportional to the amount of movement, as measured by odometry.

We utilize the equations below to model the relationship between the amount of motion and the amount of uncertainty:

\[
\begin{align*}
\sigma^2_{\text{rot1}} &= \alpha_1 \delta^2_{\text{rot1}} + \alpha_2 \delta^2_{\text{trans}} \\
\sigma^2_{\text{trans}} &= \alpha_3 \delta^2_{\text{trans}} + \alpha_4 (\delta^2_{\text{rot1}} + \delta^2_{\text{rot2}}) \\
\sigma^2_{\text{rot2}} &= \alpha_1 \delta^2_{\text{rot2}} + \alpha_2 \delta^2_{\text{trans}}
\end{align*}
\]

where the α parameters specify the noise characteristics of a particular robot (to be determined experimentally).

Note: This model differs from the book which relates the σ quantities to the $\hat{\delta}$ quantities.
The odometry motion model computes \(p(x_t | u_t, x_{t-1}) \) as follows:
The odometry motion model computes $p(x_t|u_t, x_{t-1})$ as follows:

- Compute δ_{rot1}, δ_{trans}, and δ_{rot2} from odometry
The odometry motion model computes \(p(x_t|u_t, x_{t-1}) \) as follows:

- Compute \(\delta_{rot1}, \delta_{trans}, \) and \(\delta_{rot2} \) from odometry
- \(\bar{x}_t \) is computed by integrating wheel motion; \(\bar{x}_{t-1} \) is simply the same result from the last time step
The odometry motion model computes $p(x_t | u_t, x_{t-1})$ as follows:

- Compute $\delta_{rot1}, \delta_{trans},$ and δ_{rot2} from odometry
 - \bar{x}_t is computed by integrating wheel motion; \bar{x}_{t-1} is simply the same result from the last time step
- Compute $\hat{\delta}_{rot1}, \hat{\delta}_{trans},$ and $\hat{\delta}_{rot2}$ for a specific pair of x_t and x_{t-1}
The odometry motion model computes \(p(x_t|u_t, x_{t-1}) \) as follows:

- Compute \(\delta_{rot1}, \delta_{trans}, \) and \(\delta_{rot2} \) from odometry
 - \(\bar{x}_t \) is computed by integrating wheel motion; \(\bar{x}_{t-1} \) is simply the same result from the last time step
- Compute \(\hat{\delta}_{rot1}, \hat{\delta}_{trans}, \) and \(\hat{\delta}_{rot2} \) for a specific pair of \(x_t \) and \(x_{t-1} \)
- Assuming for the moment that the “hat” parameters are true, determine the probability of obtaining \(\delta_{rot1}, \delta_{trans}, \) and \(\delta_{rot2} \)
The odometry motion model computes $p(x_t|u_t, x_{t-1})$ as follows:

- Compute $\delta_{rot1}, \delta_{trans}, \text{ and } \delta_{rot2}$ from odometry
 - \bar{x}_t is computed by integrating wheel motion; \bar{x}_{t-1} is simply the same result from the last time step
- Compute $\hat{\delta}_{rot1}, \hat{\delta}_{trans}, \text{ and } \hat{\delta}_{rot2}$ for a specific pair of x_t and x_{t-1}
- Assuming for the moment that the “hat” parameters are true, determine the probability of obtaining $\delta_{rot1}, \delta_{trans}, \text{ and } \delta_{rot2}$
The odometry motion model computes $p(x_t|u_t, x_{t-1})$ as follows:

- Compute $\delta_{rot1}, \delta_{trans}$, and δ_{rot2} from odometry
 - \bar{x}_t is computed by integrating wheel motion; \bar{x}_{t-1} is simply the same result from the last time step
- Compute $\hat{\delta}_{rot1}, \hat{\delta}_{trans}$, and $\hat{\delta}_{rot2}$ for a specific pair of x_t and x_{t-1}
- Assuming for the moment that the “hat” parameters are true, determine the probability of obtaining $\delta_{rot1}, \delta_{trans}$, and δ_{rot2}
This probability is computed as follows:
This probability is computed as follows:

\[p_1 = \text{prob}(\delta_{\text{rot}1} - \hat{\delta}_{\text{rot}1}, \sigma^2_{\text{rot}1}) \]
This probability is computed as follows:

\[p_1 = \text{prob}(\delta_{\text{rot}1} - \hat{\delta}_{\text{rot}1}, \sigma^2_{\text{rot}1}) \]
\[p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \sigma^2_{\text{trans}}) \]
This probability is computed as follows:

\[
p_1 = \text{prob}(\delta_{\text{rot}1} - \hat{\delta}_{\text{rot}1}, \sigma^2_{\text{rot}1})
\]

\[
p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \sigma^2_{\text{trans}})
\]

\[
p_3 = \text{prob}(\delta_{\text{rot}2} - \hat{\delta}_{\text{rot}2}, \sigma^2_{\text{rot}2})
\]
This probability is computed as follows:

\[p_1 = \text{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \sigma_{rot1}^2) \]
\[p_2 = \text{prob}(\delta_{trans} - \hat{\delta}_{trans}, \sigma_{trans}^2) \]
\[p_3 = \text{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \sigma_{rot2}^2) \]

\[p(x_t | u_t, x_{t-1}) = p_1 \cdot p_2 \cdot p_3 \]
This probability is computed as follows:

\[
p_1 = \text{prob}(\delta_{\text{rot}1} - \hat{\delta}_{\text{rot}1}, \sigma_{\text{rot}1}^2)
\]

\[
p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \sigma_{\text{trans}}^2)
\]

\[
p_3 = \text{prob}(\delta_{\text{rot}2} - \hat{\delta}_{\text{rot}2}, \sigma_{\text{rot}2}^2)
\]

\[
p(x_t | u_t, x_{t-1}) = p_1 \cdot p_2 \cdot p_3
\]

where \(\text{prob}(v, \sigma^2)\) returns the probability density for value \(v\) of a zero-mean Normal distribution with variance \(\sigma^2\)
This probability is computed as follows:

\[
p_1 = \text{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \sigma_{rot1}^2)
\]
\[
p_2 = \text{prob}(\delta_{trans} - \hat{\delta}_{trans}, \sigma_{trans}^2)
\]
\[
p_3 = \text{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \sigma_{rot2}^2)
\]
\[
p(x_t | u_t, x_{t-1}) = p_1 \cdot p_2 \cdot p_3
\]

where \(\text{prob}(v, \sigma^2)\) returns the probability density for value \(v\) of a zero-mean Normal distribution with variance \(\sigma^2\). The product of probabilities \(p_1 \cdot p_2 \cdot p_3\) is the joint probability under the assumption that the three noise processes are independent.
The shape of \(p(x_t|u_t, x_{t-1}) \) depends on the \(\alpha_i \) parameters, which should be chosen to match (or exceed) the robot’s actuator and odometry errors.
The shape of \(p(x_t|u_t, x_{t-1}) \) depends on the \(\alpha_i \) parameters, which should be chosen to match (or exceed) the robot’s actuator and odometry errors.

Figure 5.8 The odometry motion model, for different noise parameter settings.
Measurement Model: $p(z_t|x_t)$

We must determine the probability of observing z_t given a pose x_t. The measurement model depends heavily on the map, m.

Figure 6.1 (a) Typical ultrasound scan of a robot in its environment. (b) A misreading in ultrasonic sensing. This effect occurs when firing a sonar signal towards a reflective surface at an angle α that exceeds half the opening angle of the sensor.
Measurement Model: \[p(z_t|x_t) \]

We must determine the probability of observing \(z_t \) given a pose \(x_t \). The measurement model should incorporate all of the sensor’s various failure modes:
Measurement Model: \(p(z_t | x_t) \)

We must determine the probability of observing \(z_t \) given a pose \(x_t \). The measurement model should incorporate all of the sensor’s various failure modes:

Figure 6.1 (a) Typical ultrasound scan of a robot in its environment. (b) A misreading in ultrasonic sensing. This effect occurs when firing a sonar signal towards a reflective surface at an angle \(\alpha \) that exceeds half the opening angle of the sensor.
Measurement Model: \(p(z_t | x_t) \)

We must determine the probability of observing \(z_t \) given a pose \(x_t \). The measurement model should incorporate all of the sensor’s various failure modes:

![Diagram](image)

Figure 6.1 (a) Typical ultrasound scan of a robot in its environment. (b) A misreading in ultrasonic sensing. This effect occurs when firing a sonar signal towards a reflective surface at an angle \(\alpha \) that exceeds half the opening angle of the sensor.

The measurement model depends heavily on the map, \(m \)
A particular sensor observation z_t may be composed of a number of different sensor readings.
A particular sensor observation z_t may be composed of a number of different sensor readings. The identity of these individual readings are indicated in superscript,
A particular sensor observation z_t may be composed of a number of different sensor readings. The identity of these individual readings are indicated in superscript,

$$z_t = \left\{ z_t^1, \ldots, z_t^K \right\}$$
A particular sensor observation z_t may be composed of a number of different sensor readings. The identity of these individual readings are indicated in superscript,

$$z_t = \left\{ z_t^1, \ldots, z_t^K \right\}$$

where there are K individual sensors.
A particular sensor observation z_t may be composed of a number of different sensor readings. The identity of these individual readings are indicated in superscript,

$$z_t = \left\{ z^1_t, \ldots, z^K_t \right\}$$

where there are K individual sensors.

We assume that individual sensors are independent,
A particular sensor observation z_t may be composed of a number of different sensor readings. The identity of these individual readings are indicated in superscript,

$$z_t = \left\{ z_1^t, \ldots, z_K^t \right\}$$

where there are K individual sensors.

We assume that individual sensors are independent,

$$p(z_t|x_t) = \prod_{k=1}^{K} p(z_k^t|x_t)$$
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors.
The beam model for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z^k_t is a range.
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z_t^k is a range.

\[p(z_t^k|x_t) \]

is computed as a mixture of four distributions.
The beam model for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z_t^k is a range.

$p(z_t^k|x_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z^k_t is a range.

$p(z^k_t|x_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:

1. The sensor has measured the correct range, with some noise
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z^k_t is a range.

$p(z^k_t|x_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:

1. The sensor has measured the correct range, with some noise

Let the true range be z^*_t
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z_t^k is a range.

$p(z_t^k | x_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:

1. **The sensor has measured the correct range, with some noise**

 Let the true range be z_t^{k*}. The random variable z_t^k is assumed to be Normally distributed with mean z_t^{k*} and standard deviation σ_{hit}.
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z_t^k is a range.

$p(z_t^k|x_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:

1. **The sensor has measured the correct range, with some noise**

Let the true range be z_t^{k*}. The random variable z_t^k is assumed to be Normally distributed with mean z_t^{k*} and standard deviation σ_{hit}. Thus, if we know z_t^{k*} and σ_{hit} we can calculate $p_{hit}(z_t^k|x_t)$
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z^k_t is a range.

$p(z^k_t|x_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:

1. **The sensor has measured the correct range, with some noise**

Let the true range be $z^*_{t_k}$. The random variable z^k_t is assumed to be Normally distributed with mean $z^*_{t_k}$ and standard deviation σ_{hit}.

Thus, if we know $z^*_{t_k}$ and σ_{hit} we can calculate $p_{hit}(z^k_t|x_t)$. But how do we determine $z^*_{t_k}$
The **beam model** for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z^k_t is a range.

$p(z^k_t|\mathbf{x}_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:

1. The sensor has measured the correct range, with some noise

Let the true range be z^*_t. The random variable z^k_t is assumed to be Normally distributed with mean z^*_t and standard deviation σ_{hit}.

Thus, if we know z^*_t and σ_{hit} we can calculate $p_{hit}(z^k_t|\mathbf{x}_t)$. But how do we determine z^*_t?

We **cast a ray** from position \mathbf{x}_t in the map in the direction that our sensor is facing
The beam model for range finding sensors is a good model for both laser rangefinders and ultrasonic sensors. We will assume that z_t^k is a range.

$p(z_t^k|x_t)$ is computed as a mixture of four distributions. These four distributions come from the probability of the following conditions:

1. The sensor has measured the correct range, with some noise

Let the true range be z_t^{k*}. The random variable z_t^k is assumed to be Normally distributed with mean z_t^{k*} and standard deviation σ_{hit}.

Thus, if we know z_t^{k*} and σ_{hit} we can calculate $p_{hit}(z_t^k|x_t)$. But how do we determine z_t^{k*}?

We cast a ray from position x_t in the map in the direction that our sensor is facing. When this ray hits its first obstacle we set z_t^{k*} to the distance it has travelled.
We may wish to restrict the distribution to have zero probability after the sensor’s maximum range z_{max}, as we know the sensor will not produce a larger value.
We may wish to restrict the distribution to have zero probability after the sensor’s maximum range z_{max}, as we know the sensor will not produce a larger value. If this is done it would also be necessary to normalize the distribution to ensure its sum is 1.
We may wish to restrict the distribution to have zero probability after the sensor’s maximum range z_{max}, as we know the sensor will not produce a larger value. If this is done it would also be necessary to normalize the distribution to ensure its sum is 1.

(a) Gaussian distribution p_{hit}

$$p(z_t^k \mid x_t, m)$$

z_t^k z_{max}
2. Unexpected objects

The map may omit many objects (e.g. people). The presence of such an object will tend to reduce the reported range. The probability of an object interposing itself between the robot and a mapped part of the environment decreases with range. This probability can be modelled as an exponential distribution, truncated at the true range.
2. Unexpected objects

The map may omit many objects (e.g. people)
2. Unexpected objects

The map may omit many objects (e.g. people). The presence of such object will tend to *reduce* the reported range.
2. Unexpected objects

The map may omit many objects (e.g. people). The presence of such object will tend to *reduce* the reported range. The probability of an object interposing itself between the robot and a mapped part of the environment decreases with range.
2. Unexpected objects

The map may omit many objects (e.g. people). The presence of such object will tend to \textit{reduce} the reported range. The probability of an object interposing itself between the robot and a mapped part of the environment decreases with range. This probability can be modelled as an exponential distribution, truncated at the true range.
2. Unexpected objects

The map may omit many objects (e.g. people). The presence of such object will tend to *reduce* the reported range. The probability of an object interposing itself between the robot and a mapped part of the environment decreases with range. This probability can be modelled as an exponential distribution, truncated at the true range.

(b) Exponential distribution p_{short}

$$p(z_t^k \mid x_t, m)$$
3. Missed objects

The sensor may miss an object altogether. Or the emitted beam may experience specular reflection and never return to the sensor. This possibility is modelled by a “spike” in probability at the maximum range of the sensor z_{max}.

COMP 4766/6912 (MUN) Localization June 29, 2018 16 / 29
3. Missed objects

The sensor may miss an object altogether.
3. Missed objects

The sensor may miss an object altogether. Or the emitted beam may experience specular reflection and never return to the sensor.
3. Missed objects

The sensor may miss an object altogether. Or the emitted beam may experience specular reflection and never return to the sensor. This possibility is modelled by a “spike” in probability at the maximum range of the sensor z_{max}.
3. Missed objects

The sensor may miss an object altogether. Or the emitted beam may experience specular reflection and never return to the sensor. This possibility is modelled by a “spike” in probability at the maximum range of the sensor z_{max}.

(c) Uniform distribution p_{max}

$$p(z_t^k \mid x_t, m)$$

z_{t*}

z_{max}
4. Unexplainable measurements

Sometimes sensors produce inexplicable measurements, for no apparent reason. We "model" such occurrences by a uniform distribution.
4. Unexplainable measurements

Sometimes sensors produce inexplicable measurements, for no apparent reason.
4. Unexplainable measurements

Sometimes sensors produce inexplicable measurements, for no apparent reason. We “model” such occurrences by a uniform distribution.
4. Unexplainable measurements

Sometimes sensors produce inexplicable measurements, for no apparent reason. We “model” such occurrences by a uniform distribution.

(d) Uniform distribution p_{rand}

$$p(z_t^k \mid x_t, m)$$
The following shows all four of these densities individually:

\[p(z_k^t | x_t, m) \]

- **Gaussian distribution**:\(p_{hit} \)
- **Exponential distribution**:\(p_{short} \)
- **Uniform distribution**:\(p_{max} \)
- **Uniform distribution**:\(p_{rand} \)

Figure 6.3 Components of the range finder sensor model. In each diagram the horizontal axis corresponds to the measurement \(z_k^t \), the vertical to the likelihood.
The following shows all four of these densities individually:

(a) Gaussian distribution p_{hit}

(b) Exponential distribution p_{short}

(c) Uniform distribution p_{max}

(d) Uniform distribution p_{rand}

Figure 6.3 Components of the range finder sensor model. In each diagram the horizontal axis corresponds to the measurement z_t^k, the vertical to the likelihood.
A weighted combination of the four densities gives \(p(z^k_t|x_t) \):
A weighted combination of the four densities gives $p(z_t^k | x_t)$:

\[p(z_t^k | x_t, m) \]

Figure 6.4 “Pseudo-density” of a typical mixture distribution $p(z_t^k | x_t, m)$.
Figure 6.7 Probabilistic model of perception: (a) Laser range scan, projected into a previously acquired map m. (b) The likelihood $p(z_t \mid x_t, m)$, evaluated for all positions x_t and projected into the map (shown in gray). The darker a position, the larger $p(z_t \mid x_t, m)$.
Figure 6.7 Probabilistic model of perception: (a) Laser range scan, projected into a previously acquired map m. (b) The likelihood $p(z_t \mid x_t, m)$, evaluated for all positions x_t and projected into the map (shown in gray). The darker a position, the larger $p(z_t \mid x_t, m)$.

(a) Laser scan and part of the map

(b) Likelihood for different positions
Grid localization is the direct application of Bayes filter to mobile robot localization using a discrete grid (usually 3-D) as the belief representation.
Grid localization is the direct application of Bayes filter to mobile robot localization using a discrete grid (usually 3-D) as the belief representation.

- Uses the discrete Bayes filter (integrals replaced with summation)
Grid localization is the direct application of Bayes filter to mobile robot localization using a discrete grid (usually 3-D) as the belief representation.

- Uses the discrete Bayes filter (integrals replaced with summation).
- Can be applied on a fine-grained grid or on a topological decomposition of the belief state.
Grid Localization

- **Grid localization** is the direct application of Bayes filter to mobile robot localization using a discrete grid (usually 3-D) as the belief representation
 - Uses the **discrete Bayes filter** (integrals replaced with summation)
- Can be applied on a fine-grained grid or on a topological decomposition of the belief state
- Fine-grained approaches yield good results but with a high computational cost
Grid localization is the direct application of Bayes filter to mobile robot localization using a discrete grid (usually 3-D) as the belief representation

- Uses the **discrete Bayes filter** (integrals replaced with summation)

Can be applied on a fine-grained grid or on a topological decomposition of the belief state

- Fine-grained approaches yield good results but with a high computational cost

- Has the ability to track multiple hypotheses
Grid Localization

- **Grid localization** is the direct application of Bayes filter to mobile robot localization using a discrete grid (usually 3-D) as the belief representation
 - Uses the **discrete Bayes filter** (integrals replaced with summation)
- Can be applied on a fine-grained grid or on a topological decomposition of the belief state
- Fine-grained approaches yield good results but with a high computational cost
- Has the ability to track multiple hypotheses
- The measurement model is usually defined on raw sensor values → feature extraction not required
Figure 8.1 Grid localization using a fine-grained metric decomposition. Each picture depicts the position of the robot in the hallway along with its belief $bel(x_t)$, represented by a histogram over a grid.
For robots operating in the plane we require a 3-D probability cube to represent our belief in the robot’s pose $x_t = [x, y, \theta]^T$.

Figure 8.2 Example of a fixed-resolution grid over the robot pose variables x, y, and θ. Each grid cell represents a robot pose in the environment. Different orientations of the robot correspond to different planes in the grid (shown are only three orientations).
For robots operating in the plane we require a 3-D probability cube to represent our belief in the robot’s pose $x_t = [x, y, \theta]^T$.

![Diagram](image)

Figure 8.2 Example of a fixed-resolution grid over the robot pose variables x, y, and θ. Each grid cell represents a robot pose in the environment. Different orientations of the robot correspond to different planes in the grid (shown are only three orientations).
For robots operating in the plane we require a 3-D probability cube to represent our belief in the robot’s pose \(x_t = [x, y, \theta]^T \)

Each grid cell contains the probability that the robot has the corresponding pose.
Grid localization requires a map so that the measurement model can be applied.
Grid localization requires a map so that the measurement model can be applied. The following is a typical occupancy grid map:
Grid localization requires a map so that the measurement model can be applied. The following is a typical occupancy grid map:

![Occupancy grid map](image)

Figure 8.8 Occupancy grid map of the 1994 AAAI mobile robot competition arena.
• Typical resolution of probability cube: 15 cm in x and y, 5° in θ
- Typical resolution of probability cube: 15 cm in x and y, 5° in θ
- With greater (i.e. more fine grained) resolution the accuracy increases, but so does the computation time
- Typical resolution of probability cube: 15 cm in x and y, 5° in θ
- With greater (i.e. more fine grained) resolution the accuracy increases, but so does the computation time
- A naive implementation of grid localization can be quite slow:
• Typical resolution of probability cube: 15 cm in x and y, 5° in θ
• With greater (i.e. more fine grained) resolution the accuracy increases, but so does the computation time
• A naive implementation of grid localization can be quite slow:
 • Application of the motion model involves iterating over all x_t, and for each x_t one must iterate over all x_{t-1}
• Typical resolution of probability cube: 15 cm in x and y, 5° in θ
• With greater (i.e. more fine grained) resolution the accuracy increases, but so does the computation time
• A naive implementation of grid localization can be quite slow:
 • Application of the motion model involves iterating over all x_t, and for each x_t one must iterate over all x_{t-1}
• Typical resolution of probability cube: 15 cm in x and y, 5° in θ
• With greater (i.e. more fine grained) resolution the accuracy increases, but so does the computation time
• A naive implementation of grid localization can be quite slow:
 • Application of the motion model involves iterating over all x_t, and for each x_t one must iterate over all x_{t-1}. For a $n \times n \times n$ probability cube this is a $O(n^6)$ operation!
• Typical resolution of probability cube: 15 cm in x and y, 5° in θ

• With greater (i.e. more fine grained) resolution the accuracy increases, but so does the computation time

• A naive implementation of grid localization can be quite slow:
 • Application of the motion model involves iterating over all x_t, and for each x_t one must iterate over all x_{t-1}. For a $n \times n \times n$ probability cube this is a $O(n^6)$ operation!
 • Application of the measurement model iterates over all x_t, and for each x_t one must iterate over all k sensor values. For range sensors, each scan point requires a ray casting operation.
There are a number of ways of speeding up grid localization:

- Reduce frequency of updates.
- Decrease grid resolution: Problems: decreases accuracy, may require exaggerated noise in motion model.
- Selective updating: Apply updates in local neighbourhood: When updating a cell, restrict the space of possible prior poses to those centred around that cell.
Computational considerations

There are a number of ways of speeding up grid localization:

- Reduce frequency of updates.
There are a number of ways of speeding up grid localization:

- Reduce frequency of updates.
 - Note: If we reduce the frequency of applications of the motion model, we must integrate the motion for a longer period in between updates.
There are a number of ways of speeding up grid localization:

- Reduce frequency of updates.
 - Note: If we reduce the frequency of applications of the motion model, we must integrate the motion for a longer period in between updates.
- Decrease grid resolution.
There are a number of ways of speeding up grid localization:

- **Reduce frequency of updates.**
 - Note: If we reduce the frequency of applications of the motion model, we must integrate the motion for a longer period in between updates.

- **Decrease grid resolution.**
 - Problems: decreases accuracy, may require exaggerated noise in motion model.
Computational considerations

There are a number of ways of speeding up grid localization:

- **Reduce frequency of updates.**
 - Note: If we reduce the frequency of applications of the motion model, we must integrate the motion for a longer period in between updates.

- **Decrease grid resolution.**
 - Problems: decreases accuracy, may require exaggerated noise in motion model.

- **Selective updating.**
There are a number of ways of speeding up grid localization:

- Reduce frequency of updates.
 - Note: If we reduce the frequency of applications of the motion model, we must integrate the motion for a longer period in between updates.

- Decrease grid resolution.
 - Problems: decreases accuracy, may require exaggerated noise in motion model.

- Selective updating.
 - Apply updates in local neighbourhood: When updating a cell, restrict the space of possible prior poses to those centred around that cell.
The measurement model can also be accelerated:
The measurement model can also be accelerated:

- Pre-caching results during initialization:
The measurement model can also be accelerated:

- Pre-caching results during initialization:
 - For each possible 3D pose, cast rays for each sensor to determine beforehand the expected ranges for each pose. Store these ranges in a table for later look-up.
The measurement model can also be accelerated:

- **Pre-caching results during initialization:**
 - For each possible 3D pose, cast rays for each sensor to determine beforehand the expected ranges for each pose. Store these ranges in a table for later look-up.
 - Pre-compute the p.d.f.’s for all possible ranges.
The measurement model can also be accelerated:

- Pre-caching results during initialization:
 - For each possible 3D pose, cast rays for each sensor to determine beforehand the expected ranges for each pose. Store these ranges in a table for later look-up.
 - Pre-compute the p.d.f.’s for all possible ranges.

- Reduce the number of sensors used.
An example of grid localization

It is important to note that the probabilities in the grid have been projected from 3-D to 2-D. The distribution of belief over \(\theta \) is very important, but it is not shown below.

Figure 8.9 (a) Data set (odometry and sonar range scans) collected in the environment shown in Figure 8.8. This data set is sufficient for global localization using the grid localization. The beliefs at the points marked "A," "B," and "C" are shown in (b), (c), and (d).
An example of grid localization. It is important to note that the probabilities in the grid have been projected from 3-D to 2-D.
An example of grid localization. It is important to note that the probabilities in the grid have been projected from 3-D to 2-D. The distribution of belief over θ is very important, but it is not shown below.
An example of grid localization. It is important to note that the probabilities in the grid have been projected from 3-D to 2-D. The distribution of belief over θ is very important, but it is not shown below.

Figure 8.9 (a) Data set (odometry and sonar range scans) collected in the environment shown in Figure 8.8. This data set is sufficient for global localization using the grid localization. The beliefs at the points marked “A,” “B” and “C” are shown in (b), (c), and (d).
An example of grid localization. It is important to note that the probabilities in the grid have been projected from 3-D to 2-D. The distribution of belief over θ is very important, but it is not shown below.

Figure 8.9 (a) Data set (odometry and sonar range scans) collected in the environment shown in Figure 8.8. This data set is sufficient for global localization using the grid localization. The beliefs at the points marked “A,” “B” and “C” are shown in (b), (c), and (d).

Probabilistic Robotics.

MIT Press.