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Odometry Motion Model: p(xt |ut , xt−1)

We require a general motion model to apply Bayes filter to mobile
robot localization

The motion model described here (from [Thrun et al., 2005]) is based
on odometry
Odometry gives a direct estimate of position → unfortunately this
estimate exhibits cumulative error
We employ the difference between the current odometry pose vector
x̄t and the last odometry pose vector x̄t−1

x̄t = [x̄ ′, ȳ ′, θ̄′]T x̄t−1 = [x̄ , ȳ , θ̄]T

Define the control or action as,

ut = [ x̄t−1, x̄t ]T

The difference between x̄t and x̄t−1 is a good estimate of the
difference between xt and xt−1
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x̄t = [x̄ ′, ȳ ′, θ̄′]T x̄t−1 = [x̄ , ȳ , θ̄]T
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Define the control or action as,

ut = [ x̄t−1, x̄t ]T

The difference between x̄t and x̄t−1 is a good estimate of the
difference between xt and xt−1

COMP 4766/6912 (MUN) Localization June 29, 2018 3 / 29



Odometry Motion Model: p(xt |ut , xt−1)

We require a general motion model to apply Bayes filter to mobile
robot localization
The motion model described here (from [Thrun et al., 2005]) is based
on odometry
Odometry gives a direct estimate of position → unfortunately this
estimate exhibits cumulative error
We employ the difference between the current odometry pose vector
x̄t and the last odometry pose vector x̄t−1
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Define the control or action as,

ut = [ x̄t−1, x̄t ]T

The difference between x̄t and x̄t−1 is a good estimate of the
difference between xt and xt−1

COMP 4766/6912 (MUN) Localization June 29, 2018 3 / 29



Odometry Motion Model: p(xt |ut , xt−1)

We require a general motion model to apply Bayes filter to mobile
robot localization
The motion model described here (from [Thrun et al., 2005]) is based
on odometry
Odometry gives a direct estimate of position → unfortunately this
estimate exhibits cumulative error
We employ the difference between the current odometry pose vector
x̄t and the last odometry pose vector x̄t−1
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We transform ut into a sequence of three steps:

An initial rotation of angle δrot1
A translation of length δtrans
A final rotation of angle δrot2

δrot1

δtrans

δrot2

Figure 5.7 Odometry model: The robot motion in the time interval (t − 1, t] is ap-

proximated by a rotation δrot1, followed by a translation δtrans and a second rotation

δrot2. The turns and translations are noisy.

We model the robot’s motion using these three parameters; Yet the actual
motion may have been quite different (e.g. rotating while translating)
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Given ut = [ x̄t−1, x̄t ]T we can derive δrot1, δtrans , and δrot2 via simple
geometry.

COVERED ON BOARD

δrot1 = atan2(ȳ ′ − ȳ , x̄ ′ − x̄)− θ̄

δtrans =
√

(x̄ − x̄ ′)2 + (ȳ − ȳ ′)2

δrot2 = θ̄′ − θ̄ − δrot1
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We assume that these measured values are corrupted by independent
noise, such that the true values are given as follows,

δtruerot1 = δrot1 − εrot1
δtruetrans = δtrans − εtrans
δtruerot2 = δrot2 − εrot2

where the three ε’s are Normal random variables assumed to have zero
mean.

We don’t know these true parameters. But given a pair of poses xt and
xt−1 we can compute the parameters we would expect

xt = [x ′, y ′, θ′]T xt−1 = [x , y , θ]T

δ̂rot1 = atan2(y ′ − y , x ′ − x)− θ

δ̂trans =
√

(x − x ′)2 + (y − y ′)2

δ̂rot2 = θ′ − θ − δ̂rot1
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In order to work out the probability of a given movement, we need to
know the variance of the noise processes, εrot1, εtrans , and εrot2

. We
assume that the amount of noise is proportional to the amount of
movement, as measured by odometry.

We utilize the equations below to model the relationship between the
amount of motion and the amount of uncertainty:

σ2rot1 = α1δ
2
rot1 + α2δ

2
trans

σ2trans = α3δ
2
trans + α4(δ2rot1 + δ2rot2)

σ2rot2 = α1δ
2
rot2 + α2δ

2
trans

where the α parameters specify the noise characteristics of a particular
robot (to be determined experimentally).

Note: This model differs from the book which relates the σ quantities to
the δ̂ quantities.
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The odometry motion model computes p(xt |ut , xt−1) as follows:

Compute δrot1, δtrans , and δrot2 from odometry

x̄t is computed by integrating wheel motion; x̄t−1 is simply the same
result from the last time step

Compute δ̂rot1, δ̂trans , and δ̂rot2 for a specific pair of xt and xt−1

Assuming for the moment that the “hat” parameters are true,
determine the probability of obtaining δrot1, δtrans , and δrot2
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This probability is computed as follows:

p1 = prob(δrot1 − δ̂rot1, σ2rot1)

p2 = prob(δtrans − δ̂trans , σ2trans)

p3 = prob(δrot2 − δ̂rot2, σ2rot2)

p(xt |ut , xt−1) = p1 · p2 · p3

where prob(v , σ2) returns the probability density for value v of a
zero-mean Normal distribution with variance σ2. The product of
probabilities p1 · p2 · p3 is the joint probability under the assumption that
the three noise processes are independent.
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The shape of p(xt |ut , xt−1) depends on the αi parameters, which should
be chosen to match (or exceed) the robot’s actuator and odometry errors

(a) (b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

COMP 4766/6912 (MUN) Localization June 29, 2018 10 / 29



The shape of p(xt |ut , xt−1) depends on the αi parameters, which should
be chosen to match (or exceed) the robot’s actuator and odometry errors

(a) (b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

COMP 4766/6912 (MUN) Localization June 29, 2018 10 / 29



Measurement Model: p(zt |xt)

We must determine the probability of observing zt given a pose xt

. The
measurement model should incorporate all of the sensor’s various failure
modes:

(a) (b)

Figure 6.1 (a) Typical ultrasound scan of a robot in its environment. (b) A misread-

ing in ultrasonic sensing. This effect occurs when firing a sonar signal towards a

reflective surface at an angle α that exceeds half the opening angle of the sensor.

The measurement model depends heavily on the map, m
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A particular sensor observation zt may be composed of a number of
different sensor readings

. The identity of these individual readings are
indicated in superscript,

zt =
{
z1t , . . . , z

K
t

}
where there are K individual sensors.

We assume that individual sensors are independent,

p(zt |xt) =
K∏

k=1

p(zkt |xt)
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The beam model for range finding sensors is a good model for both laser
rangefinders and ultrasonic sensors

. We will assume that zkt is a range.

p(zkt |xt) is computed as a mixture of four distributions. These four
distributions come from the probability of the following conditions:

1. The sensor has measured the correct range, with some noise

Let the true range be zk∗t . The random variable zkt is assumed to be
Normally distributed with mean zk∗t and standard deviation σhit .

Thus, if we know zk∗t and σhit we can calculate phit(z
k
t |xt). But how do

we determine zk∗t ?

We cast a ray from position xt in the map in the direction that our sensor
is facing. When this ray hits its first obstacle we set zk∗t to the distance it
has travelled.
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We may wish to restrict the distribution to have zero probability after the
sensor’s maximum range zmax , as we know the sensor will not produce a
larger value

. If this is done it would also be necessary to normalize the
distribution to ensure its sum is 1.
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2. Unexpected objects

The map may omit many objects (e.g. people). The presence of such
object will tend to reduce the reported range. The probability of an object
interposing itself between the robot and a mapped part of the environment
decreases with range. This probability can be modelled as an exponential
distribution, truncated at the true range.
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3. Missed objects

The sensor may miss an object altogether. Or the emitted beam may
experience specular reflection and never return to the sensor. This
possibility is modelled by a “spike” in probability at the maximum range of
the sensor zmax .
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4. Unexplainable measurements

Sometimes sensors produce inexplicable measurements, for no apparent
reason. We “model” such occurrences by a uniform distribution.
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The following shows all four of these densitites individually:

(a) Gaussian distribution phit

p(zk
t

| xt,m)
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k∗
t
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(b) Exponential distribution pshort
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(c) Uniform distribution pmax
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(d) Uniform distribution prand
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Figure 6.3 Components of the range finder sensor model. In each diagram the hor-

izontal axis corresponds to the measurement zk

t , the vertical to the likelihood.
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A weighted combination of the four densitites gives p(zkt |xt):

z
k∗
t

zmax

Figure 6.4 “Pseudo-density” of a typical mixture distribution p(zk

t | xt, m).
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(a) Laser scan and part of the map

(b) Likelihood for different positions

Figure 6.7 Probabilistic model of perception: (a) Laser range scan, projected into a

previously acquired map m. (b) The likelihood p(zt | xt, m), evaluated for all posi-

tions xt and projected into the map (shown in gray). The darker a position, the larger

p(zt | xt, m).
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Grid Localization

Grid localization is the direct application of Bayes filter to mobile
robot localization using a discrete grid (usually 3-D) as the belief
representation

Uses the discrete Bayes filter (integrals replaced with summation)

Can be applied on a fine-grained grid or on a topological
decomposition of the belief state

Fine-grained approaches yield good results but with a high
computational cost

Has the ability to track multiple hypotheses

The measurement model is usually defined on raw sensor values →
feature extraction not required
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Figure 8.1 Grid localization using a fine-grained metric decomposition. Each pic-

ture depicts the position of the robot in the hallway along with its belief bel(xt),

represented by a histogram over a grid.



For robots operating in the plane we require a 3-D probability cube to
represent our belief in the robot’s pose xt = [x , y , θ]T

bel(x)x

pose

Grid Environment

Figure 8.2 Example of a fixed-resolution grid over the robot pose variables x, y,

and θ. Each grid cell represents a robot pose in the environment. Different orien-

tations of the robot correspond to different planes in the grid (shown are only three

orientations).

Each grid cell contains the probability that the robot has the
corresponding pose
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Grid localization requires a map so that the measurement model can be
applied

. The following is a typical occupancy grid map:

31m

22m

Figure 8.8 Occupancy grid map of the 1994 AAAI mobile robot competition arena.
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Typical resolution of probability cube: 15 cm in x and y , 5◦ in θ

With greater (i.e. more fine grained) resolution the accuracy
increases, but so does the computation time

A naive implementation of grid localization can be quite slow:

Application of the motion model involves iterating over all xt , and for
each xt one must iterate over all xt−1

. For a n× n× n probability cube
this is a O(n6) operation!
Application of the measurement model iterates over all xt , and for each
xt one must iterate over all k sensor values. For range sensors, each
scan point requires a ray casting operation.
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Computational considerations

There are a number of ways of speeding up grid localization:

Reduce frequency of updates.

Note: If we reduce the frequency of applications of the motion model,
we must integrate the motion for a longer period in between updates.

Decrease grid resolution.

Problems: decreases accuracy, may require exaggerated noise in motion
model.

Selective updating.

Apply updates in local neighbourhood: When updating a cell, restrict
the space of possible prior poses to those centred around that cell
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The measurement model can also be accelerated:

Pre-caching results during initialization:

For each possible 3D pose, cast rays for each sensor to determine
beforehand the expected ranges for each pose. Store these ranges in a
table for later look-up.
Pre-compute the p.d.f.’s for all possible ranges.

Reduce the number of sensors used.
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An example of grid localization

. It is important to note that the
probabilities in the grid have been projected from 3-D to 2-D. The
distribution of belief over θ is very important, but it is not shown below.

C

A

B

3m

20m

Robot position (A)

Robot position (B) Robot position (C)

(a)

(c)

(b)

(d)

Figure 8.9 (a) Data set (odometry and sonar range scans) collected in the environ-

ment shown in Figure 8.8. This data set is sufficient for global localization using the

grid localization. The beliefs at the points marked “A,” “B” and “C” are shown in (b),

(c), and (d).
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