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Introduction to Markov Localization

In this section we introduce Bayes filter which is the basis of most
robot localization algorithms

We will refer to this style of localization as Markov localization
because Bayes filter utilizes the Markov assumption (to be described)

Three different Markov localization algorithms will be presented:

Grid localization
Monte Carlo localization
Kalman filter localization
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Different Localization Problems

Local localization (a.k.a position tracking): The initial pose of the
robot is known

Global localization: The initial pose of the robot is unknown; More
difficult than local localization; Requires a multiple hypothesis belief
representation

The kidnapped robot problem: This is a particular form of global
localization where the robot is transported from its current position to a
new position—without telling the robot that this transportation has taken
place. A robot which solves the kidnapped robot problem will be able to
determine its new position. A robot which cannot solve the problem will
still believe it is at the old position.

A robot that can solve the kidnapped robot problem is able to recover
from errors much more readily than one that cannot.
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Notation

Note: The notation will now change to that of [Thrun et al., 2005]

xt The robot’s state at time t

This is a vector giving everything we need to know about the robot’s state
at time t; It will often just give the robot’s pose, xt = [x , y , θ]T , but
sometimes additional information about the world, such as the position of
landmarks, will be added to xt

ut Control input at time t; This can either be a measured
velocity, or a proprioceptive (e.g. wheel encoder)
measurement of the robot’s movement from time t − 1 to
time t

zt Sensor input at time t
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We assume the robot is in some state xt−1 (which happens to be
unknown)

. It then executes some action ut , which moves it into state xt .
The exact state is uncertain, so the robot reads its sensors to obtain zt .
The task of the localization algorithm is to estimate the probability
distribution of xt , given ut , zt , and the distribution of xt−1.The figure
below illustrates this development,

t+1
u

t−1
u

t
u

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,

states, and measurements.

COMP 4766/6912 (MUN) Localization June 11, 2018 6 / 27



We assume the robot is in some state xt−1 (which happens to be
unknown). It then executes some action ut , which moves it into state xt

.
The exact state is uncertain, so the robot reads its sensors to obtain zt .
The task of the localization algorithm is to estimate the probability
distribution of xt , given ut , zt , and the distribution of xt−1.The figure
below illustrates this development,

t+1
u

t−1
u

t
u

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,

states, and measurements.

COMP 4766/6912 (MUN) Localization June 11, 2018 6 / 27



We assume the robot is in some state xt−1 (which happens to be
unknown). It then executes some action ut , which moves it into state xt .
The exact state is uncertain, so the robot reads its sensors to obtain zt

.
The task of the localization algorithm is to estimate the probability
distribution of xt , given ut , zt , and the distribution of xt−1.The figure
below illustrates this development,

t+1
u

t−1
u

t
u

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,

states, and measurements.

COMP 4766/6912 (MUN) Localization June 11, 2018 6 / 27



We assume the robot is in some state xt−1 (which happens to be
unknown). It then executes some action ut , which moves it into state xt .
The exact state is uncertain, so the robot reads its sensors to obtain zt .
The task of the localization algorithm is to estimate the probability
distribution of xt , given ut , zt , and the distribution of xt−1.

The figure
below illustrates this development,

t+1
u

t−1
u

t
u

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,

states, and measurements.

COMP 4766/6912 (MUN) Localization June 11, 2018 6 / 27



We assume the robot is in some state xt−1 (which happens to be
unknown). It then executes some action ut , which moves it into state xt .
The exact state is uncertain, so the robot reads its sensors to obtain zt .
The task of the localization algorithm is to estimate the probability
distribution of xt , given ut , zt , and the distribution of xt−1.The figure
below illustrates this development,

t+1
u

t−1
u

t
u

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,

states, and measurements.

COMP 4766/6912 (MUN) Localization June 11, 2018 6 / 27



We assume the robot is in some state xt−1 (which happens to be
unknown). It then executes some action ut , which moves it into state xt .
The exact state is uncertain, so the robot reads its sensors to obtain zt .
The task of the localization algorithm is to estimate the probability
distribution of xt , given ut , zt , and the distribution of xt−1.The figure
below illustrates this development,

t+1
u

t−1
u

t
u

x

tz

t+1x

t+1zt−1z

xt−1 t

Figure 2.2 The dynamic Bayes network that characterizes the evolution of controls,

states, and measurements.

COMP 4766/6912 (MUN) Localization June 11, 2018 6 / 27



The robot’s belief that it is in some state xt will be denoted bel(xt),

bel(xt) = p(xt |z1:t , u1:t)

where the subscript 1 : t indicates all current and past measurements or
odometry readings.

If we know the robot’s start position, then bel(x0) would be initialized to 1
at bel(x true0 ) and 0 everywhere else (minimum uncertainty). If the start
position is totally unknown then bel(x0) would be set to a uniform
distribution (maximum uncertainty).

Assuming we begin with the robot’s previous belief bel(xt−1), the new
belief bel(xt) will be obtained through Bayes filter in a two stage process.
In the first stage the new odometry reading ut is incorporated. This gives
us the following predicted belief

bel(xt) = p(xt |z1:t−1, u1:t)
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The Markov Assumption: Knowing the previous state vector xt−1 and
the system’s current inputs ut and zt gives everything we need to know to
compute xt .

That is, we don’t need the past history of states xt−2, xt−3, ...,
or the past history of movements or sensor inputs in order to
probabilistically determine xt+1. Another way of saying this is that the
state vector x is considered complete complete.

For this assumption to hold, the state vector must include a complete
description of all objects within the environment (inluding a complete
map; a description of all people/robots/animals in the environment and
their complete state vectors; etc...).

Thus, this assumption is generally untrue in practise, but we utilize it
nonetheless as it renders the localization problem tractable.
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All of the main probabilistic localization algorithms can be derived from
from Bayes Filter,

Bayes Filter

Inputs: bel(xt−1), ut , zt
For all xt ,

bel(xt) =

∫
p(xt |ut , xt−1)bel(xt−1)dxt−1 (1)

bel(xt) = ηp(zt |xt)bel(xt) (2)

Output: bel(xt)

Equation (1) updates the belief to account for the robot’s motion. This
generates the prediction bel(xt). Equation (2) achieves the
measurement update. It incorporates the sensor values and combines
this information with the prediction to update the belief.
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The prediction: equation (1)

bel(xt) =

∫
p(xt |ut , xt−1)bel(xt−1)dxt−1

bel(xt−1) gives the probability of each possible previous state xt−1. The
prediction is obtained by summing the probability of each possible previous
state times the probability that we have just made the trip from that
previous state to the current state:

p(xt |ut , xt−1)

This is known as the motion model.
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Example: A Pizza-Turning Robot

Mrs. Vanelli’s has purchased a pizza-turning robot which employs a rather
inaccurate motor

. The robot is designed such that at any discrete time
step t, only one of the pizza’s eight slices will be underneath the heat lamp

Heat Lamp
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We wish to determine the probability that slice i of the 8-slice pizza is
under the lamp

.

Our belief representation will be discrete; It is an array of length 8 storing
the probabilities of each slice being under the lamp

At every time step the action, ut , is the same—the pizza rotates by one
noisy step; This fact, plus the discrete representation allow equation (1) of
Bayes filter to be simplified:

For all xt ,
bel(xt) =

∑
p(xt |xt−1)bel(xt−1)

This robot has no sensing capability. Thus, bel(xt) = bel(xt). There is
therefore no need to apply equation (2).
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bel(xt) =
∑

p(xt |xt−1)bel(xt−1)

What is the robot’s belief that slice i is under the heat lamp?

bel(xt = i) =
8∑

j=1

p(xt = i |xt−1 = j)bel(xt−1 = j)

We need a motion model for p(xt = i |xt−1 = j). Lets say that the turning
mechanism has a 0.5 probability of turning the pizza by one slice; a 0.25
probability of turning by two slices; and a 0.25 probability of not turning it
at all. We assume all turns are in the positive direction.

p(xt = i |xt−1 = j) =


0.25 for i = j
0.5 for i = j ⊕ 1
0.25 for i = j ⊕ 2
0 otherwise

where ⊕ indicates addition with wrap-around (e.g. 7⊕ 2 = 1)
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Assume that bel(x0) is 1 for x0 = 1 and 0 otherwise

. The application of
equation (1) yields:

i

t 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0
1 0.25 0.5 0.25 0 0 0 0 0
2 0.0625 0.25 0.375 0.25 0.0625 0 0 0
...

...
...

...
...

...
...

...
...

60 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

A peak in bel(xt) at the most likely position persists for some time, but
our uncertainty about which slice is under the lamp only grows with
time—eventually leading to global uncertainty (i.e. a uniform distribution).
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Back to the Bayes filter...

The measurement update: equation (2)

bel(xt) = ηp(zt |xt)bel(xt)

Recall that bel(xt) is our new belief in xt after incorporating ut . We
remain confident in xt only if our sensory observation zt is consistent with
xt . This confidence is expressed by the measurement model,

p(zt |xt)

η is a normalizing factor applied after all p(zt |xt)bel(xt) have been
computed,

η =
1∫

p(zt |xt)bel(xt)dxt
Typically, the measurement model requires a map of the environment so
that we can determine how likely it was to observe zt at position xt .
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Back to the pizza...

To correct the problem of ever-increasing uncertainty, a mushroom
detector is installed. In order for this sensor to be useful in determining
which pizza slice is under the lamp, a map of the pizza is required.

The mushroom map:

slice i 1 2 3 4 5 6 7 8

Mu? Yes Yes Yes Yes No No No No

p(zt = Yes|xt = i) 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.1

p(zt = No|xt = i) 0.1 0.1 0.1 0.1 0.9 0.9 0.9 0.9

The bottom two rows give the measurement model—the mushroom
detector is correct 90% of the time
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Assume again that we know the heat lamp is initially on slice 1

. The
application of the prediction step yields,

t bel(xt)

1 0.25 0.5 0.25 0 0 0 0 0

To apply the measurement update, we need to know zt . Assume zt = Yes.
p(zt = Yes|xt = 1) = 0.9, so

t almost bel(xt)

1 0.225 0.45 0.225 0 0 0 0 0

We then have to normalize this ‘almost correct’ belief

t bel(xt)

1 0.25 0.5 0.25 0 0 0 0 0

Why did this measurement update fail to reduce uncertainty?
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We continue to update our belief

; Assume z2 = z3 = Yes,

t bel(xt)

1 0.25 0.5 0.25 0 0 0 0 0

2 bel(xt)
0.0625 0.25 0.375 0.25 0.0625 0 0 0

bel(xt)
0.0662 0.2647 0.3971 0.2647 0.0074 0 0 0

3 bel(xt)
0.0165 0.0993 0.2482 0.3309 0.2335 0.0699 0.0018 0

bel(xt)
0.0227 0.1362 0.3405 0.4540 0.0356 0.0107 0.0003 0

Notice how the measurements now reduce uncertainty.
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Derivation of Bayes Filter

We will derive Bayes filter below

. First, we illustrate the probability of an
event conditioned on multiple other events. Consider this Venn diagram,

The Law of Total Probability requires mutually exclusive and exhaustive
events yi . Hence:

p(x) 6=
∑
i

p(x |yi )p(yi )

p(x |z) =
∑
i

p(x |yi , z)p(yi |z)
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Bayes Rule is always applicable,

p(x |y) =
p(y |x)p(x)

p(y)

If an event is conditioned on multiple events, we can still apply Bayes rule
as long as we take care which of these other events is expanded,

p(x |y , z) =
p(y |x , z)p(x |z)

p(y |z)
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Bayes filter takes as input the belief from the last time step,

bel(xt−1) = p(xt−1|z1:t−1, u1:t−1)

It requires the motion and measurement models to be supplied,

Motion model: p(xt |ut , xt−1)

Measurement model: p(zt |xt)

As its output, it produces the current belief,

bel(xt) = p(xt |z1:t , u1:t)
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We begin with the current belief and work backwards to determine how to
compute it,

bel(xt) = p(xt |z1:t , u1:t)

Apply Bayes rule,

p(xt |z1:t , u1:t) =
p(zt |xt , z1:t−1, u1:t)p(xt |z1:t−1, u1:t)

p(zt |z1:t−1, u1:t)

Bayes rule is applied for all xt . The denominator above does not depend
upon xt . Therefore, we do not need to evaluate it. We have the constraint
that the probability over all xt must sum to 1. Therefore, we treat the
denominator as a normalizing constant which can be determined after all
of the numerators have been found. We call this constant η,

p(xt |z1:t , u1:t) = ηp(zt |xt , z1:t−1, u1:t)p(xt |z1:t−1, u1:t)
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But how do we obtain bel(xt)

? We repeat again the definition:

bel(xt) = p(xt |z1:t−1, u1:t)

The previous possible states xt−1 are assumed to be mutually exclusive
and to represent all possibilities. Hence, we can apply the law of total
probability:

p(xt |z1:t−1, u1:t) =

∫
p(xt |xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t)dxt−1

Consider the first factor in the integral,

p(xt |xt−1, z1:t−1, u1:t)

If xt−1 is given, knowledge of previous measurements z1:t−1 and past
controls u1:t−1 tell us nothing (Markov). Hence,

p(xt |xt−1, z1:t−1, u1:t) = p(xt |xt−1, ut)

This is the motion model.
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p(xt |z1:t−1, u1:t) =

∫
p(xt |xt−1, ut)p(xt−1|z1:t−1, u1:t)dxt−1

Consider the second factor,

p(xt−1|z1:t−1, u1:t)

Knowledge of the most recent action ut tells us nothing about xt−1(unless
we know that in certain previous states we would have taken certain
actions—assume that we don’t know this, meaning that actions are chosen
randomly). Therefore, we can re-write the factor as follows:

p(xt−1|z1:t−1, u1:t) = p(xt−1|z1:t−1, u1:t−1)

We can recognize this as bel(xt−1) which is the input to Bayes
filter.Therefore the integral above can be rewritten as follows:

p(xt |z1:t−1, u1:t) =

∫
p(xt |xt−1, ut)bel(xt−1)dxt−1

This is equation (1) of Bayes filter.
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The above analysis shows that Bayes filter appropriately computes bel(xt)
if the input bel(xt−1) is correct

. If we assume that the initial belief bel(x0)
at time t = 0 was correct, then the correctness of Bayes filter follows by
induction.
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