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Navigation

Providing robots with the requisite sensors, actuators, and algorithms
to allow them to navigate in general environments is a big job; Four
major subtasks are...

Perception: extract meaningful data from sensors
Localization: determine the robot’s position
Cognition / Planning: decide on what actions to take
Motion control: control the actuators

Localization answers the question “Where am I?”
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Why is Localization Difficult?

Doesn’t odometry solve the localization problem?

Localization by odometry (i.e. integrating wheel rotation) is subject
to cumulative error

Doesn’t GPS solve the localization problem?

GPS is enormously helpful in some applications, but has
disadvantages for others:

GPS will be unavailable in a variety of situations:

Indoors
In obstructed areas
Underwater
In space (or on other worlds)
If the U.S. decides to make it unavailable

Insufficiently accurate for localizing smaller robots (such as the
“body-navigating nanorobots of the future”
[Siegwart and Nourbakhsh, 2004])
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Issues

Sensor noise:

Noise from proprioceptive sensors such as wheel encoders makes
localization w.r.t. last known position difficult
Noise from exteroceptive sensors makes localization w.r.t. a map
difficult

Perceptual aliasing: the sensor data obtained at one location is
indistinguishable from the data obtained at another location

Noise introduced by movement:

Systematic errors: e.g. Differences between wheel radii
Non-Systematic errors: e.g. Wheel slippage
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Map Representation

In this part of the course we will assume the existence of a map

Map used to compare with the robot’s current sensory state

Can be supplied to the robot or,
Built autonomously — SLAM (Simultaneous Localization and
Mapping)

Choice of map representation depends on precision required, available
sensors, and computational constraints
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A continuous representation represents all mapped objects in
continuous-space.

e.g. represent map as the set of infinite lines through object boundaries
[Tomatis et al., 2003]

Cons: Requires storage proportional to the number of objects
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An occupancy grid imposes a grid upon the world, with grid cells
corresponding to free space left empty; and those for objects filled

Cons: inexact, size of map grows quickly
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An adaptive decomposition can improve the storage efficiency of an
occupancy grid

Obtained by recursively splitting occupied grid cells into sub-cells
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A topological representation represents the world as a graph, with nodes
used to represent positions, and edges passable paths between positions
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Topological representations have two main requirements:
1 A method to detect current position (node)
2 A method of travelling between nodes (e.g. beacon aiming, corridor

centreing, wall following, visual homing,...)

Visual features particularly useful for (1)

pros:

The local navigation strategies required for (2) can be quite simple
This representation is lightweight (low memory cost) and well-suited
for planning

cons:

Difficulty in maintaining a consistent density of nodes
Subject to perceptual aliasing problems
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Belief Representation

We will represent a robot’s belief in its position as a probability
distribution

There are a number of ways to represent probability distributions

Continuous or discrete
Single-hypothesis or multiple-hypothesis

Single-hypothesis: The robot believes it is at one position with some
margin for error
Multiple-hypothesis: The robot can represent the belief that it could be
at a number of possible positions
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(a) Continuous, single-hypothesis (Gaussian)

(b) Continuous, multiple-hypothesis (mixture of Gaussians)

(c) Discrete, multiple-hypothesis

(d) Discrete, multiple-hypothesis (for a topological map)



Single-hypothesis belief:

(a) in previous slide
Very efficient to update
May not be suitable if starting from a position of global uncertainty
(i.e. no clue as to where you are)

Multiple-hypothesis beliefs:

(b), (c), or (d) on previous slide
A sampled representation of a continuous distribution is also possible
(Monte Carlo Localization)
Representation is more powerful, but updates can be very expensive
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Example of multiple-hypothesis belief tracking using a discrete
representation,

Large initial uncertainty is reduced by new observations
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Probability Review

To understand probabilistic localization we will have to review some
concepts from probability. We start with conditional probability.

Given that some event B has occurred, the probability p(A|B) gives the
conditional probability that A has also occurred.

To illustrate, consider the following probability pizza:

Assume that we pick a random slice of pizza with uniform probability...
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p(Pepperoni) = 5/8

p(Anchovies) = 3/8

p(Anchovies|Pepperoni) = 1/5

The definition of conditional probability:

p(A|B) =
p(A ∧ B)

p(B)



Bayes Rule

If we write the definition of conditional probability as p(B|A) we can obtain
the following well-known rule (DERIVATION COVERED ON BOARD),

p(A|B) =
p(B|A)p(A)

p(B)

This is called Bayes rule and allows us to calculate a conditional
probability (a.k.a. prior probability) from its “inverse”

e.g. What is p(Pepperoni |Anchovies)?

p(Pe|An) =
p(An|Pe)p(Pe)

p(An)
=

1

3



Theorem of Total Probability

p(Mushrooms) = p(Mu) = 1/2

If A1, . . . ,An are mutually exclusive and exhaustive events, the theorem of
total probability says that:

p(B) =
n∑

i=1

P(B|Ai )P(Ai )

p(Mu) = p(Mu|Slice1)p(Slice1) + p(Mu|Slice2)p(Slice2) + · · ·
= 0 · 1/8 + 0 · 1/8 + 0 · 1/8 + 0 · 1/8 +

1 · 1/8 + 1 · 1/8 + 1 · 1/8 + 1 · 1/8 = 1/2



Independence

Two events A and B are independent iff their joint probability is equal to
the product of their individual probabilities

p(A ∧ B) = p(A)p(B)

For the pizza on the left, events Pe and An are independent: COVERED
ON BOARD

However, for the pizza on the right these events are not independent:
COVERED ON BOARD



Conditional Independence

Sometimes two events can be independent, but only if some other event is
known to have occurred. This is known as conditional independence and
is expressed by the following relation,

p(A ∧ B|C ) = p(A|C )p(B|C )

For this pizza, if we know that a slice contains mushrooms, the event that
it contains anchovies is independent from the event that it contains
pepperoni,
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