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Manoeuvrability: Degree of Mobility

Some robots are more manoeuvrable than
others

Intuitively, we can see that the differential
drive robot is more manoeuvrable than the
turning bicycle

A robot’s degree of mobility is defined by its
sliding constraints

Sliding constraints can be visualized by drawing
a zero motion line through the wheel’s axis,
perpendicular to the wheel plane

The intersection of all zero motion lines defines
the instantaneous centre of rotation (ICR)

YR

ICR
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A robot’s instantaneous velocity must be tangential to the circle
centred at its ICR

Recall the translatory component of the turning bicycle’s velocity:
ẋR = −r φ̇1/2, ẏR = r φ̇1

For any given r and φ̇1 the velocity vector (heavy vector below) will
be orthogonal to the line connecting P and ICR

ICR

r φ̇

r φ̇/2
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XR
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ICR’s for Various Wheel Configurations

ICR

Left: For a differential-drive the two zero-motion lines are coincident;
Thus, the ICR is constrained only to lie somewhere on that line

Centre: For an Ackerman configuration (approximated by modern
cars) the two rear wheels give only one zero-motion line; To prevent
slipping, the two front wheels must be steered such that their zero
motion lines intersect the rear line at a common point

Right: A degenerate configuration; There is no ICR; If there is no
slipping, there is also no movement
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We can formally characterize a robot’s degree of mobility

Consider a differential-drive robot; It has two wheels but only one
independent sliding constraint

To determine the degree of mobility we count the number of
independent sliding constraints

Define a matrix C that encodes the wheel direction component of the
sliding constraint equations for all wheels

The rank of this matrix is the number of independent constraints

rank = number of independent rows or columns (have to be equal)
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Examples:

Differential-drive:

C =

[
0 1 0
0 1 0

]
rank [C ] = 1

Turning bicycle:

C =

[
−1 0 −1

−
√

2/2 −
√

2/2
√

2/2

]
rank [C ] = 2
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The maximum rank of an N × 3 matrix is

We define a robot’s degree of mobility as follows,

δm = 3− rank [C ]

Differential-drive: δm = 2
Turning bicycle: δm = 1
Robot with all omnidirectional wheels: δm = 3

Determining δm is an important part of determining how
manoeuvrable a robot is; However, the fact that some wheels are
steerable should also be considered...
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We define a robot’s degree of steerability, δs , as the number of
independently steerable wheels that yield a valid ICR

A normal bicycle: δs = 1
A car: δs = 1 (cannot independently steer both front wheels)
The maximum δs is 2: Once two wheels define the ICR, the choice of
the third is not independent

We define a robot’s degree of manoeuvrability as follows,

δM = δm + δs

COMP 4766/6912 (MUN) Kinematics of Wheeled Robots: Part 3 May 23, 2018 9 / 29



Degrees of Manoeuvrability, Mobility, and Steerability for Various
Configurations
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The term holonomic robot usually refers to a robot with no
constraints on its motion (a.k.a. an omnidirectional robot)

Nonholonomic robots are subject to nonholonomic constraints (i.e.
sliding constraints)

Omnidirectional robots have δM = 3 and exhibit the best possible
manoeuvrability; However, the omnidirectional wheels required for
such robots (i.e. Swedish, castor, or spherical) have some drawbacks:

increased complexity and expense
reduced accuracy for dead reckoning
reduced ground clearance for powered versions
standard wheels can passively counteract lateral forces; more efficient
and stable for high-speed turns
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What is the difference between an omnidirectional robot, and a
non-omnidirectional robot such as the Two-Steer? Both have δM = 3?

The difference is that it takes time for a steered robot to steer its wheels
to the appropriate positions; Consider this omnidirectional robot following
an ‘L’ shaped trajectory
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Now consider the trajectory of the Two-Steer

During time intervals 1-2 and 3-4 the robot was doing nothing but steering
its wheels; The omnidirectional robot could transition between segments of
the trajectory without any delay; Both robots take the same path but the
trajectories (path + time dimension) differ



Motion Control: Trajectory Following

One simple means of controlling the motion of a robot is to
decompose its path into a sequence of elementary motions

Elementary motions may include lines and segments of circles which
any robot with δM ≥ 2 can execute

The robot’s trajectory can be planned completely in advance without
using any sensors → Open-loop control

Alternatively, information from the sensors can be used to update the
plan → Closed-loop control
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Open-Loop System:

The input (a.k.a. reference) is first converted by the input transducer to
the form required by the controller. The process or plant caries out the
core function of the system (e.g. the furnace in a heating system, motors
in a robot). The output (a.k.a. the controlled variable) differs from its
desired value because of the two disturbances.

e.g. Open-loop heating system: The controller is an electronic amplifier
and disturbance 1 is noise in the amplifier’s output. Disturbance 2 might
be variations in temperature due to the furnace itself.
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Open-loop systems cannot correct for disturbances. In our example, the
final temperature would deviate from the desired temperature.

e.g. A toaster is an open-loop system. It cannot correct for the thickness
of the bread or whether it is whole wheat or white.
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Closed-Loop System:

In a closed-loop system there is an output transducer or sensor which
converts the output into the form used by the controller. e.g. Position can
be converted to an electrical signal by a potentiometer.

The first summing junction subtracts the output signal from the input.
This is the error signal.
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Closed-loop systems compensate for disturbances through feedback. If
the actuating signal is zero then the output is correct and the plant does
not need to be driven. Otherwise, the actuating signal describes how
different the output is from what it should be. This drives the plant to
correct this difference.

While open-loop systems fail to correct for disturbances or changes in the
environment, they will tend to be simpler and cheaper than closed-loop
systems. Thus, there is a trade-off to consider between them.
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Closed-Loop Control

Consider the problem of driving a differential-drive robot to goal
position g I = [g Ix g Iy ], expressed in the global reference frame

(Later we will consider the problem of arriving at the goal position
with a particular orientation)

We need to determine how to set the robot’s forward speed v(t) and
rotational speed ω(t)

For a differential-drive robot we have the following,

v(t) = ẋR =
r(φ̇r + φ̇l)

2

w(t) = θ̇ =
r(φ̇r − φ̇l)

2l
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If we can obtain gR then we can apply some control function f to get
v(t), the forward velocity component, and ω(t), the angular velocity
component [

v(t)
ω(t)

]
= f (gR)

The control function should drive the robot such that,

lim
t→∞

gR(t) = [0 0]T

which just means that the robot will eventually reach the goal
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...Some Details

We are given g I ; How do we determine gR?
COVERED ON BOARD

gR = Rcw (θ)(g I − [x y ]T )
(We should use the 2× 2 rotation matrix here)
Clearly we need [x y ]T ; How do we get that?

Odometry (previously covered), or by using a map (to be covered)
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Two-step Controller

We break the problem into two steps:

Turn to face the goal
Move towards goal

First, it is convenient to express gR using polar coordinates [ρ α]T

gRx

α

ρ

gRy

XR

YR

The two steps can now be specified:

Minimize α
Minimize ρ
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The Controller: Two States

parameters: kα, εα, kρ, ερ

1 [
v(t)
ω(t)

]
=

[
0

kα sign(α)

]
Switch to state 2 if |α| < εα

2 [
v(t)
ω(t)

]
=

[
kρ
0

]
End if ρ < ερ

Note: angle α must be in [−π, π]



There are problems with this controller:

If the first step fails, the second will also fail
It is difficult to choose appropriate values for the parameters:
kα, εα, kρ, ερ

Smaller thresholds require high-precision localization and actuation (if
too small, goal is never reached)
Larger thresholds reduce accuracy

Splitting the motion into two distinct phases is inefficent; We can save
time by moving forwards while turning
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Smooth Controller 1

We try to minimize the quantities gRx , gRy , but now we minimize
both simultaneously

Consider the following control law

v(t) = kvgRx

ω(t) = kωgRy

where the k parameters are positive

The robot drives forward until gRx = 0

If gRy is positive, robot will turn CCW to face the goal; If negative it
will turn CW.
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Smooth Controller 2

Assume we now wish to drive the robot to a desired pose
Pose means (x , y) position and orientation θ

We are given the goal pose g I = [g Ix g Iy g Iθ]T , expressed in the
inertial reference frame

We need the goal pose in the robot reference frame

gR = Rcw (θ)(g I − ξI )

(We should use the 3× 3 rotation matrix here)
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Again it will be useful to express the goal pose using polar coordinates

gRx

α

ρ

gRy

gRθ

XR

YR

The final orientation is given by gRθ

We require a controller that minimizes α, ρ, and gRθ simultaneously
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Consider the following control law

v(t) = kρρ

ω(t) = kαα− kθgRθ

where the following conditions hold:

α ∈ [−π, π]
all of the k parameters are positive
kθ < kα

The robot drives forward until ρ = 0

If α is positive, robot will turn CCW to minimize it

kθ < kα so θ does not have much influence until α becomes small; At
this point the robot will be driven to turn away from the goal; This
increases α so the robot will turn towards the goal again, only now
gRθ will be reduced
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Smooth Controller 2: Refinement

If α ∈
(
−π

2 ,
π
2

]
then the robot will approach the goal directly

(although its trajectory will be curved)

If α ∈
(
−π,−π

2

]
∪
(
π
2 , π

]
then the robot will first have to turn around

before approaching the goal; We can detect this situation and modify
the control law so that the robot backs up to the goal position,
without turning around

v(t) = −kρρ
ω(t) = −kα(α− π)− kθgRθ

(Here the angle (α− π) must be in [−π, π])
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