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Robot Kinematic Constraints

The kinematic constraints on a robot come from the combination of
constraints from its wheels:

The rolling constraint:

[sin(α + β) − cos(α + β) (−l) cos(β)] ξ̇R = r φ̇

The sliding constraint:

[cos(α + β) sin(α + β) l sin(β)] ξ̇R = 0

Castor, Swedish, and spherical wheels impose no constraints

Therefore we consider only constraints from fixed and steerable
standard wheels

For each wheel, we have both rolling and sliding constraints;
Therefore, two equations per wheel

We stack all of these constraints together into matrix form as
illustrated in the examples that follow...
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Example: A Differential-Drive Robot
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Our D-D robot has two fixed standard wheels, plus a Castor wheel for
stability (plays no part in the analysis)
The parameters of the two FSW’s are as follows:

Right wheel:
αr = −π

2

βr = π (+ve spin should cause movement in + XR direction)

Left wheel:
αl =

π
2

βl = 0

Assume that the two wheels are equidistant from P at a distance of l
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Here are the rolling constraints for both wheels:[
sin(αr + βr ) − cos(αr + βr ) (−l) cos(βr )

]
ξ̇R = r φ̇r[

sin(αl + βl) − cos(αl + βl) (−l) cos(βl)
]
ξ̇R = r φ̇l

Now the sliding constraints:[
cos(αr + βr ) sin(αr + βr ) l sin(βr )

]
ξ̇R = 0[

cos(αl + βl) sin(αl + βl) l sin(βl)
]
ξ̇R = 0

Combine all of the above into one big equation:
sin(αr + βr ) − cos(αr + βr ) (−l) cos(βr )
sin(αl + βl) − cos(αl + βl) (−l) cos(βl)
cos(αr + βr ) sin(αr + βr ) l sin(βr )
cos(αl + βl) sin(αl + βl) l sin(βl)

 ξ̇R = r


φ̇r
φ̇l
0
0


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Our overall equation is,
1 0 l
1 0 −l
0 1 0
0 1 0

 ξ̇R = r


φ̇r
φ̇l
0
0


We solve for ξ̇R .

COVERED ON BOARD
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Example: A Turning Bicycle

YR

XR

β2 =
3π
4

α2 =
π
2

α1 = −π
2

β1 = −π
2

2

A bicycle with its front wheel locked in a left turn
sin(α1 + β1) − cos(α1 + β1) (−l1) cos(β1)
sin(α2 + β2) − cos(α2 + β2) (−l2) cos(β2)
cos(α1 + β1) sin(α1 + β1) l1 sin(β1)
cos(α2 + β2) sin(α2 + β2) l2 sin(β2)

 ξ̇R

= r


φ̇1
φ̇2
0
0



COMP 4766/6912 (MUN) Kinematics of Wheeled Robots: Part 2 May 23, 2018 7 / 10




0 1 0

−
√

2/2
√

2/2
√

2/2
−1 0 −1

−
√

2/2 −
√

2/2
√

2/2

 ξ̇R = r


φ̇1
φ̇2
0
0


We apply Gauss-Jordan elimination to determine both the solution, and
the condition on the existence of the solution

0 1 0 r φ̇1
−
√

2/2
√

2/2
√

2/2 r φ̇2
−1 0 −1 0

−
√

2/2 −
√

2/2
√

2/2 0

→ row exchanges and combinations
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After a number of steps, we arrive at,
1 0 0 −r φ̇1/2

0 1 0 r φ̇1
0 0 1 r φ̇1/2

0 0 0 r
(√

2
2 φ̇2 − φ̇1

)


Yielding the following

ẋR = −r φ̇1/2, ẏR = r φ̇1, θ̇ = r φ̇1/2,

φ̇1 =

√
2

2
φ̇2

This last equation is a condition on the existence of solutions; Unlike a
differential drive robot, the two wheel speeds here cannot be set arbitrarily
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Using the Forward Kinematic Equation

Odometry:

One use for the forward kinematic equation is to allow a robot’s
current pose to be tracked (known as odometry or dead reckoning)
Let us say we know ξI (t) for the previous time step and we wish to
determine the pose for current time t ′

From the motors’ optical encoders we can get an estimate of the
wheels’ current roll speeds: φ̇1, φ̇2, ...
Using the forward kinematic equation we obtain: ξ̇R
We can obtain ξ̇I using our current estimate for θ
We apply a first-order Taylor series expansion:

ξI (t
′) = ξI (t) + (t ′ − t)ξ̇I (t) + · · ·

(The “· · · ” represents higher-order terms that we don’t bother to
include in a first-order approximation)
This equation can be applied iteratively to localize the robot over time.
However, it will certainly drift as time passes.
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