Unit 2: Locomotion
Kinematics of Wheeled Robots: Part 2

Computer Science 4766/6912

Department of Computer Science
Memorial University of Newfoundland

May 23, 2018
Robot Kinematic Constraints

- Example: A Differential-Drive Robot
- Example: A Turning Bicycle
- Using the Forward Kinematic Equation
Robot Kinematic Constraints

- The kinematic constraints on a robot come from the combination of constraints from its wheels:

\[
\begin{align*}
\text{The rolling constraint:} & \\
& \quad \sin(\alpha + \beta) - \cos(\alpha + \beta) (-l) \cos(\beta) \dot{\xi}_R = r \dot{\phi} \\
\text{The sliding constraint:} & \\
& \quad \cos(\alpha + \beta) \sin(\alpha + \beta) l \sin(\beta) \dot{\xi}_R = 0
\end{align*}
\]
Robot Kinematic Constraints

- The kinematic constraints on a robot come from the combination of constraints from its wheels:
 - The rolling constraint:
 \[
 \begin{bmatrix}
 \sin(\alpha + \beta) - \cos(\alpha + \beta) (-l) \cos(\beta)
 \end{bmatrix}
 \dot{\xi}_R = r\dot{\phi}
 \]
The kinematic constraints on a robot come from the combination of constraints from its wheels:

- The rolling constraint:
 \[
 [\sin(\alpha + \beta) - \cos(\alpha + \beta)(-l)\cos(\beta)] \dot{\xi}_R = r\dot{\phi}
 \]
The kinematic constraints on a robot come from the combination of constraints from its wheels:

- The rolling constraint:
 \[[\sin(\alpha + \beta) - \cos(\alpha + \beta) (-l) \cos(\beta)] \dot{\xi}_R = r\dot{\phi} \]

- The sliding constraint:
 \[[\cos(\alpha + \beta) \sin(\alpha + \beta) l \sin(\beta)] \dot{\xi}_R = 0 \]
The kinematic constraints on a robot come from the combination of constraints from its wheels:

- **The rolling constraint:**

\[
\begin{bmatrix}
\sin(\alpha + \beta) & -\cos(\alpha + \beta) & (-l) \cos(\beta)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix}
= r\dot{\phi}
\]

- **The sliding constraint:**

\[
\begin{bmatrix}
\cos(\alpha + \beta) & \sin(\alpha + \beta) & l \sin(\beta)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix}
= 0
\]
The kinematic constraints on a robot come from the combination of constraints from its wheels:

- The rolling constraint:
 \[
 [\sin(\alpha + \beta) - \cos(\alpha + \beta)(-l)\cos(\beta)]\dot{\xi}_R = r\dot{\phi}
 \]

- The sliding constraint:
 \[
 [\cos(\alpha + \beta) \sin(\alpha + \beta) l\sin(\beta)]\dot{\xi}_R = 0
 \]

- Castor, Swedish, and spherical wheels impose no constraints
The kinematic constraints on a robot come from the combination of constraints from its wheels:

- The rolling constraint:
 \[
 [\sin(\alpha + \beta) - \cos(\alpha + \beta) (-l) \cos(\beta)] \dot{\xi}_R = r \dot{\phi}
 \]

- The sliding constraint:
 \[
 [\cos(\alpha + \beta) \sin(\alpha + \beta) / \sin(\beta)] \dot{\xi}_R = 0
 \]

- Castor, Swedish, and spherical wheels impose no constraints
- Therefore we consider only constraints from fixed and steerable standard wheels
The kinematic constraints on a robot come from the combination of constraints from its wheels:

- The rolling constraint:
 \[
 \begin{bmatrix}
 \sin(\alpha + \beta) - \cos(\alpha + \beta) (-l) \cos(\beta)
 \end{bmatrix} \dot{\xi}_R = r \dot{\phi}
 \]

- The sliding constraint:
 \[
 \begin{bmatrix}
 \cos(\alpha + \beta) \sin(\alpha + \beta) l \sin(\beta)
 \end{bmatrix} \dot{\xi}_R = 0
 \]

- Castor, Swedish, and spherical wheels impose no constraints
- Therefore we consider only constraints from fixed and steerable standard wheels
- For each wheel, we have both rolling and sliding constraints; Therefore, two equations per wheel
The kinematic constraints on a robot come from the combination of constraints from its wheels:

- The rolling constraint:
 \[
 \begin{bmatrix}
 \sin(\alpha + \beta) \\
 -\cos(\alpha + \beta) (-l) \cos(\beta)
 \end{bmatrix} \dot{\xi}_R = r \dot{\phi}
 \]

- The sliding constraint:
 \[
 \begin{bmatrix}
 \cos(\alpha + \beta) \\
 \sin(\alpha + \beta) \\
 l \sin(\beta)
 \end{bmatrix} \dot{\xi}_R = 0
 \]

- Castor, Swedish, and spherical wheels impose no constraints
- Therefore we consider only constraints from fixed and steerable standard wheels
- For each wheel, we have both rolling and sliding constraints; Therefore, two equations per wheel
- We stack all of these constraints together into matrix form as illustrated in the examples that follow...
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis). The parameters of the two FSW's are as follows:

Right wheel:
\[\alpha_r = -\frac{\pi}{2} \]
\[\beta_r = \pi \] (+ve spin should cause movement in +X direction)

Left wheel:
\[\alpha_l = \frac{\pi}{2} \]
\[\beta_l = 0 \]

Assume that the two wheels are equidistant from P at a distance of l.
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis)
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis).

The parameters of the two FSW’s are as follows:
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis).

The parameters of the two FSW’s are as follows:
 - Right wheel:
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis)

The parameters of the two FSW's are as follows:
- Right wheel:
 - $\alpha_r = -\frac{\pi}{2}$
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis).

The parameters of the two FSW’s are as follows:

- **Right wheel:**
 - $\alpha_r = -\frac{\pi}{2}$
 - $\beta_r = \pi$ (+ve spin should cause movement in $+X_R$ direction)
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis).

The parameters of the two FSW’s are as follows:

- **Right wheel:**
 - $\alpha_r = -\frac{\pi}{2}$
 - $\beta_r = \pi$ (+ve spin should cause movement in $+ X_R$ direction)
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis)

The parameters of the two FSW's are as follows:

- **Right wheel:**
 - $\alpha_r = -\frac{\pi}{2}$
 - $\beta_r = \pi$ (positive spin should cause movement in $+X_R$ direction)

- **Left wheel:**
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis).

The parameters of the two FSW’s are as follows:

- Right wheel:
 - $\alpha_r = -\frac{\pi}{2}$
 - $\beta_r = \pi$ (+ve spin should cause movement in $+ X_R$ direction)

- Left wheel:
 - $\alpha_l = \frac{\pi}{2}$
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis).

The parameters of the two FSW’s are as follows:

- **Right wheel:**
 - $\alpha_r = -\frac{\pi}{2}$
 - $\beta_r = \pi$ (+ve spin should cause movement in $+ X_R$ direction)

- **Left wheel:**
 - $\alpha_l = \frac{\pi}{2}$
 - $\beta_l = 0$
Our D-D robot has two fixed standard wheels, plus a Castor wheel for stability (plays no part in the analysis).

The parameters of the two FSW's are as follows:

- **Right wheel:**
 - \(\alpha_r = -\frac{\pi}{2} \)
 - \(\beta_r = \pi \) (+ve spin should cause movement in + \(X_R \) direction)

- **Left wheel:**
 - \(\alpha_l = \frac{\pi}{2} \)
 - \(\beta_l = 0 \)

Assume that the two wheels are equidistant from \(P \) at a distance of \(l \)
Here are the rolling constraints for both wheels:

\[
\begin{align*}
\dot{\xi}_R &= r \dot{\phi}_r \\
\dot{\xi}_R &= r \dot{\phi}_l
\end{align*}
\]
Here are the rolling constraints for both wheels:

\[
\begin{bmatrix}
\sin(\alpha_r + \beta_r) & -\cos(\alpha_r + \beta_r) & (-l) \cos(\beta_r) \\
\sin(\alpha_l + \beta_l) & -\cos(\alpha_l + \beta_l) & (-l) \cos(\beta_l)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix}
=
\begin{bmatrix}
r \dot{\phi}_r \\
r \dot{\phi}_l
\end{bmatrix}
\]
Here are the rolling constraints for both wheels:

\[
\begin{bmatrix}
\sin(\alpha_r + \beta_r) & -\cos(\alpha_r + \beta_r) & (-l)\cos(\beta_r)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix} = r\dot{\phi}_r
\]

\[
\begin{bmatrix}
\sin(\alpha_l + \beta_l) & -\cos(\alpha_l + \beta_l) & (-l)\cos(\beta_l)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix} = r\dot{\phi}_l
\]

Now the sliding constraints:
Here are the rolling constraints for both wheels:

\[
\begin{bmatrix}
\sin(\alpha_r + \beta_r) & -\cos(\alpha_r + \beta_r) & (-l) \cos(\beta_r) \\
\sin(\alpha_l + \beta_l) & -\cos(\alpha_l + \beta_l) & (-l) \cos(\beta_l)
\end{bmatrix}
\dot{\xi}_R = r \dot{\phi}_r
\]

\[
\begin{bmatrix}
\sin(\alpha_l + \beta_l) & -\cos(\alpha_l + \beta_l) & (-l) \cos(\beta_l)
\end{bmatrix}
\dot{\xi}_R = r \dot{\phi}_l
\]

Now the sliding constraints:

\[
\begin{bmatrix}
\cos(\alpha_r + \beta_r) & \sin(\alpha_r + \beta_r) & l \sin(\beta_r) \\
\cos(\alpha_l + \beta_l) & \sin(\alpha_l + \beta_l) & l \sin(\beta_l)
\end{bmatrix}
\dot{\xi}_R = 0
\]
Here are the rolling constraints for both wheels:

\[
\begin{bmatrix}
\sin(\alpha_r + \beta_r) & - \cos(\alpha_r + \beta_r) & (-l) \cos(\beta_r) \\
\sin(\alpha_l + \beta_l) & - \cos(\alpha_l + \beta_l) & (-l) \cos(\beta_l)
\end{bmatrix} \dot{\xi}_R = r \dot{\phi}_r
\]

\[
\begin{bmatrix}
\sin(\alpha_r + \beta_r) & - \cos(\alpha_r + \beta_r) & (-l) \cos(\beta_r) \\
\sin(\alpha_l + \beta_l) & - \cos(\alpha_l + \beta_l) & (-l) \cos(\beta_l)
\end{bmatrix} \dot{\xi}_R = r \dot{\phi}_l
\]

Now the sliding constraints:

\[
\begin{bmatrix}
\cos(\alpha_r + \beta_r) & \sin(\alpha_r + \beta_r) & l \sin(\beta_r) \\
\cos(\alpha_l + \beta_l) & \sin(\alpha_l + \beta_l) & l \sin(\beta_l)
\end{bmatrix} \dot{\xi}_R = 0
\]

Combine all of the above into one big equation:
Here are the rolling constraints for both wheels:

\[
\begin{bmatrix}
\sin(\alpha_r + \beta_r) - \cos(\alpha_r + \beta_r) (-l) \cos(\beta_r)
\sin(\alpha_l + \beta_l) - \cos(\alpha_l + \beta_l) (-l) \cos(\beta_l)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix}
= r \dot{\phi}_r
\]

\[
\begin{bmatrix}
\sin(\alpha_l + \beta_l) - \cos(\alpha_l + \beta_l) (-l) \cos(\beta_l)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix}
= r \dot{\phi}_l
\]

Now the sliding constraints:

\[
\begin{bmatrix}
\cos(\alpha_r + \beta_r) \sin(\alpha_r + \beta_r) l \sin(\beta_r)
\cos(\alpha_l + \beta_l) \sin(\alpha_l + \beta_l) l \sin(\beta_l)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix}
= 0
\]

Combine all of the above into one big equation:

\[
\begin{bmatrix}
\sin(\alpha_r + \beta_r) - \cos(\alpha_r + \beta_r) (-l) \cos(\beta_r)
\sin(\alpha_l + \beta_l) - \cos(\alpha_l + \beta_l) (-l) \cos(\beta_l)
\cos(\alpha_r + \beta_r) \sin(\alpha_r + \beta_r) l \sin(\beta_r)
\cos(\alpha_l + \beta_l) \sin(\alpha_l + \beta_l) l \sin(\beta_l)
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R
\end{bmatrix}
= r
\begin{bmatrix}
\dot{\phi}_r \\
\dot{\phi}_l \\
0 \\
0
\end{bmatrix}
\]
Our overall equation is,

\[
\begin{bmatrix}
1 & 0 & \ell_1 & 0 \\
0 & 1 & 0 & \\
\cdot & \cdot & \cdot & \cdot \\
\end{bmatrix} \\
\dot{\xi}_R = \begin{bmatrix}
\dot{\phi}_r \\
\dot{\phi}_l \\
0 & 0 \\
\end{bmatrix}
\]
Our overall equation is,

\[
\begin{bmatrix}
1 & 0 & l \\
1 & 0 & -l \\
0 & 1 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\dot{\xi}_R = r
\begin{bmatrix}
\dot{\phi}_r \\
\dot{\phi}_l \\
0 \\
0 \\
\end{bmatrix}
\]
Our overall equation is,

$$
\begin{bmatrix}
1 & 0 & l \\
1 & 0 & -l \\
0 & 1 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\dot{\xi}_R =
\begin{bmatrix}
\dot{\phi}_r \\
\dot{\phi}_l \\
0 \\
0 \\
\end{bmatrix}
$$

We solve for $\dot{\xi}_R$.
Example: A Turning Bicycle

A bicycle with its front wheel locked in a left turn

\[\alpha_2 = \frac{\pi}{2} \]
\[\beta_2 = \frac{3\pi}{4} \]
\[\alpha_1 = -\frac{\pi}{2} \]
\[\beta_1 = -\frac{\pi}{2} \]
Example: A Turning Bicycle

A bicycle with its front wheel locked in a left turn

\[
\begin{bmatrix}
\sin(\alpha_1 + \beta_1) & -\cos(\alpha_1 + \beta_1) & (-l_1)\cos(\beta_1) \\
\sin(\alpha_2 + \beta_2) & -\cos(\alpha_2 + \beta_2) & (-l_2)\cos(\beta_2) \\
\cos(\alpha_1 + \beta_1) & \sin(\alpha_1 + \beta_1) & l_1\sin(\beta_1) \\
\cos(\alpha_2 + \beta_2) & \sin(\alpha_2 + \beta_2) & l_2\sin(\beta_2)
\end{bmatrix}
\begin{bmatrix}
\dot{x}_R \\
\dot{y}_R \\
\dot{\theta}_R
\end{bmatrix}
= r
\begin{bmatrix}
\dot{\phi}_1 \\
\dot{\phi}_2 \\
0 \\
0
\end{bmatrix}
\]
\[
\dot{\mathbf{\xi}}_R = r \begin{bmatrix}
0 & 1 & 0 \\
-\sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 \\
-1 & 0 & -1 \\
-\sqrt{2}/2 & -\sqrt{2}/2 & \sqrt{2}/2 \\
\end{bmatrix} \begin{bmatrix}
\dot{\phi}_1 \\
\dot{\phi}_2 \\
0 \\
0 \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & 1 & 0 \\
-\sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 \\
-1 & 0 & -1 \\
-\sqrt{2}/2 & -\sqrt{2}/2 & \sqrt{2}/2
\end{bmatrix}
\begin{bmatrix}
\dot{\xi}_R \\
\dot{\phi}_1 \\
\dot{\phi}_2
\end{bmatrix}
= r
\begin{bmatrix}
\dot{\phi}_1 \\
0 \\
0
\end{bmatrix}
\]

We apply Gauss-Jordan elimination to determine both the solution, and the condition on the existence of the solution.
We apply Gauss-Jordan elimination to determine both the solution, and the condition on the existence of the solution.

\[
\begin{bmatrix}
0 & 1 & 0 \\
-\sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 \\
-1 & 0 & -1 \\
-\sqrt{2}/2 & -\sqrt{2}/2 & \sqrt{2}/2
\end{bmatrix}
\dot{\xi}_R = r
\begin{bmatrix}
\dot{\phi}_1 \\
\dot{\phi}_2 \\
0 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & 1 & 0 \\
-\sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 \\
-1 & 0 & -1 \\
-\sqrt{2}/2 & -\sqrt{2}/2 & \sqrt{2}/2 \\
\end{bmatrix}
\begin{bmatrix}
\dot{\phi}_1 \\
\dot{\phi}_2 \\
\end{bmatrix} =
\begin{bmatrix}
\dot{\xi}_R \\
\end{bmatrix}
\]

We apply Gauss-Jordan elimination to determine both the solution, and the condition on the existence of the solution

\[
\begin{bmatrix}
0 & 1 & 0 & r \dot{\phi}_1 \\
-\sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 & r \dot{\phi}_2 \\
-1 & 0 & -1 & 0 \\
-\sqrt{2}/2 & -\sqrt{2}/2 & \sqrt{2}/2 & 0 \\
\end{bmatrix} \rightarrow \text{row exchanges and combinations}
\]
After a number of steps, we arrive at,

\[
\begin{bmatrix}
1 & 0 & 0 & -r\dot{\phi}_1/2 \\
0 & 1 & 0 & r\dot{\phi}_1 \\
0 & 0 & 1 & r\dot{\phi}_1/2 \\
0 & 0 & 0 & r\left(\frac{\sqrt{2}}{2}\dot{\phi}_2 - \dot{\phi}_1\right)
\end{bmatrix}
\]

Yielding the following

\[
\begin{align*}
\dot{x}_R &= -r\dot{\phi}_1/2 \\
\dot{y}_R &= r\dot{\phi}_1 \\
\dot{\theta} &= r\dot{\phi}_1/2 \\
\dot{\phi}_1 &= \sqrt{2}/2 \dot{\phi}_2 - \dot{\phi}_1
\end{align*}
\]

This last equation is a condition on the existence of solutions; Unlike a differential drive robot, the two wheel speeds here cannot be set arbitrarily.
After a number of steps, we arrive at,

\[
\begin{bmatrix}
1 & 0 & 0 & -r\dot{\phi}_1/2 \\
0 & 1 & 0 & r\dot{\phi}_1 \\
0 & 0 & 1 & r\dot{\phi}_1/2 \\
0 & 0 & 0 & r\left(\frac{\sqrt{2}}{2}\dot{\phi}_2 - \dot{\phi}_1\right)
\end{bmatrix}
\]

Yielding the following
After a number of steps, we arrive at,

$$\begin{bmatrix}
1 & 0 & 0 & -r\dot{\phi}_1/2 \\
0 & 1 & 0 & r\dot{\phi}_1 \\
0 & 0 & 1 & r\dot{\phi}_1/2 \\
0 & 0 & 0 & r\left(\frac{\sqrt{2}}{2}\dot{\phi}_2 - \dot{\phi}_1\right)
\end{bmatrix}$$

Yielding the following

$$\begin{align*}
\dot{x}_R &= -r\dot{\phi}_1/2, \\
\dot{y}_R &= r\dot{\phi}_1, \\
\dot{\theta} &= r\dot{\phi}_1/2,
\end{align*}$$
After a number of steps, we arrive at,

\[
\begin{bmatrix}
1 & 0 & 0 & -r\dot{\phi}_1/2 \\
0 & 1 & 0 & r\dot{\phi}_1 \\
0 & 0 & 1 & r\dot{\phi}_1/2 \\
0 & 0 & 0 & r\left(\frac{\sqrt{2}}{2}\dot{\phi}_2 - \dot{\phi}_1\right)
\end{bmatrix}
\]

Yielding the following

\[
\dot{x}_R = -r\dot{\phi}_1/2, \quad \dot{y}_R = r\dot{\phi}_1, \quad \dot{\theta} = r\dot{\phi}_1/2,
\]

\[
\dot{\phi}_1 = \frac{\sqrt{2}}{2}\dot{\phi}_2
\]
After a number of steps, we arrive at,

\[
\begin{bmatrix}
1 & 0 & 0 & -r\dot{\phi}_1/2 \\
0 & 1 & 0 & r\dot{\phi}_1 \\
0 & 0 & 1 & r\dot{\phi}_1/2 \\
0 & 0 & 0 & r\left(\frac{\sqrt{2}}{2}\dot{\phi}_2 - \dot{\phi}_1\right)
\end{bmatrix}
\]

Yielding the following

\[
\begin{align*}
\dot{x}_R &= -r\dot{\phi}_1/2, \\
\dot{y}_R &= r\dot{\phi}_1, \\
\dot{\theta} &= r\dot{\phi}_1/2,
\end{align*}
\]

\[
\dot{\phi}_1 = \frac{\sqrt{2}}{2}\dot{\phi}_2
\]

This last equation is a condition on the existence of solutions; Unlike a differential drive robot, the two wheel speeds here cannot be set arbitrarily.
Using the Forward Kinematic Equation

- Odometry:

\[\dot{\xi}(t') = \xi(t) + (t' - t) \dot{\xi}(t) + \cdots \]

(The "\cdots" represents higher-order terms that we don't bother to include in a first-order approximation)

This equation can be applied iteratively to localize the robot over time. However, it will certainly drift as time passes.
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot’s current pose to be tracked (known as odometry or *dead reckoning*).
Using the Forward Kinematic Equation

- Odometry:
 - One use for the forward kinematic equation is to allow a robot’s current pose to be tracked (known as odometry or \textit{dead reckoning}).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot’s current pose to be tracked (known as odometry or *dead reckoning*).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
 - From the motors’ optical encoders we can get an estimate of the wheels’ current roll speeds: $\dot{\phi}_1, \dot{\phi}_2, \ldots$
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot’s current pose to be tracked (known as odometry or *dead reckoning*).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
 - From the motors’ optical encoders we can get an estimate of the wheels’ current roll speeds: $\dot{\phi}_1$, $\dot{\phi}_2$, ...
 - Using the forward kinematic equation we obtain: $\dot{\xi}_R$
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot’s current pose to be tracked (known as odometry or *dead reckoning*).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
 - From the motors’ optical encoders we can get an estimate of the wheels’ current roll speeds: $\dot{\phi}_1, \dot{\phi}_2, \ldots$.
 - Using the forward kinematic equation we obtain: $\dot{\xi}_R$.
 - We can obtain $\dot{\xi}_I$ using our current estimate for θ.

The “···” represents higher-order terms that we don’t bother to include in a first-order approximation.

This equation can be applied iteratively to localize the robot over time. However, it will certainly drift as time passes.
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot’s current pose to be tracked (known as odometry or *dead reckoning*).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
 - From the motors’ optical encoders we can get an estimate of the wheels’ current roll speeds: $\dot{\phi}_1, \dot{\phi}_2, \ldots$
 - Using the forward kinematic equation we obtain: $\dot{\xi}_R$
 - We can obtain $\dot{\xi}_I$ using our current estimate for θ.
 - We apply a first-order Taylor series expansion:
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot's current pose to be tracked (known as odometry or *dead reckoning*).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
 - From the motors' optical encoders we can get an estimate of the wheels' current roll speeds: $\dot{\phi}_1, \dot{\phi}_2, \ldots$.
 - Using the forward kinematic equation we obtain: $\dot{\xi}_R$.
 - We can obtain $\dot{\xi}_I$ using our current estimate for θ.
 - We apply a first-order Taylor series expansion:

$$\xi_I(t') = \xi_I(t) + (t' - t) \dot{\xi}_I(t) + \cdots$$

(The "\cdots" represents higher-order terms that we don't bother to include in a first-order approximation.)

This equation can be applied iteratively to localize the robot over time. However, it will certainly drift as time passes.
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot's current pose to be tracked (known as odometry or dead reckoning).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
 - From the motors’ optical encoders we can get an estimate of the wheels’ current roll speeds: $\dot{\phi}_1, \dot{\phi}_2, \ldots$.
 - Using the forward kinematic equation we obtain: $\dot{\xi}_R$.
 - We can obtain $\dot{\xi}_I$ using our current estimate for θ.
 - We apply a first-order Taylor series expansion:
 \[
 \xi_I(t') = \xi_I(t) + (t' - t)\dot{\xi}_I(t) + \cdots
 \]
 (The “\cdots” represents higher-order terms that we don’t bother to include in a first-order approximation.)
Using the Forward Kinematic Equation

- **Odometry:**
 - One use for the forward kinematic equation is to allow a robot’s current pose to be tracked (known as odometry or *dead reckoning*).
 - Let us say we know $\xi_I(t)$ for the previous time step and we wish to determine the pose for current time t'.
 - From the motors’ optical encoders we can get an estimate of the wheels’ current roll speeds: $\dot{\phi}_1, \dot{\phi}_2, \ldots$.
 - Using the forward kinematic equation we obtain: $\dot{\xi}_R$
 - We can obtain $\dot{\xi}_I$ using our current estimate for θ.
 - We apply a first-order Taylor series expansion:

$$
\xi_I(t') = \xi_I(t) + (t' - t)\dot{\xi}_I(t) + \cdots
$$

(The “⋯” represents higher-order terms that we don’t bother to include in a first-order approximation.)

- This equation can be applied iteratively to localize the robot over time. However, it will certainly drift as time passes.