Localization: Part 6
The Kalman Filter

Computer Science 4766/6912

Department of Computer Science
Memorial University of Newfoundland

July 26, 2017
The Kalman filter is perhaps the most widely-known implementation of Bayes filter.

- Numerous applications outside of robot localization
- Based upon a Gaussian belief representation
 - Belief represented as the mean μ_t and covariance matrix Σ_t of the Gaussian
- Assumes that the system update equations are linear
 - Non-linearity handled by linearization: The Extended Kalman Filter
Assumptions

- “The system” is some process evolving over time, through control inputs u_t and measurements z_t
- It has an unknown state x_t and unknown past state x_{t-1}
- x_t, u_t, and z_t are all column vectors with n, m, and k elements, respectively
- We assume that x_t evolves through the following linear update equation,
 \[x_t = A_t x_{t-1} + B_t u_t + \epsilon_t \]

- A_t is a matrix of size $n \times n$
- B_t is a matrix of size $n \times m$
- ϵ_t is a Gaussian random vector of size n
 - Zero mean and covariance matrix R_t
• The measurements z_t are assumed to be another **linear** function of the system state,

$$ z_t = C_t x_t + \delta_t $$

• C_t is a matrix of size $k \times n$
• δ_t is a Gaussian random vector of size k
 • Zero mean and covariance matrix Q_t
• It is necessary for the noise vectors $(\epsilon_0, \epsilon_1, \ldots, \epsilon_t, \delta_0, \delta_1, \ldots, \delta_t)$ to be mutually independent.

$bel(x_t)$ is represented by mean μ_t and covariance matrix Σ_t

• The initial belief $bel(x_0)$ must have a Gaussian p.d.f with mean μ_0 and covariance matrix Σ_0
• If the above assumptions hold, the belief $bel(x_t)$ will always be Gaussian
The Kalman Filter Algorithm

1. Kalman_Filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$)
2. $\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t$
3. $\bar{\Sigma}_t = A_t \Sigma_{t-1} A_T + R_t$
4. $K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1}$
5. $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t)$
6. $\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t$
7. return μ_t, Σ_t

Lines 2 and 3 implement the prediction step, which determines $\overline{bel}(x_t)$.

Lines 4 - 6 implement the measurement update, which incorporates z_t to determine $bel(x_t)$. On line 4 the Kalman gain, K_t, is computed. K_t specifies the degree of trust placed in z_t over $\overline{bel}(x_t)$.

On line 5 the actual measurement z_t is compared with the measurement prediction $C_t \bar{\mu}_t$. This difference is known as the innovation. It describes how different z_t is from what was expected.
We apply the Kalman filter to a simple robot living in a 1-D world. The “state vector” is just the scalar position x. The matrices A_t, B_t, and C_t are assumed constant and 1-D—they reduce to scalars a, b, and c. The covariance matrices R_t and Q_t are also reduced to scalars r and q. (Here, $r = 0.25$ and $q = 1$)

We assume that unless it is commanded to move, the robot will maintain its current position: $a = 1$

The control signal u_t is the distance the robot is commanded to move: $b = 1$ (the robot obeys and moves the commanded distance)

The robot has a position sensor which gives 1-D position directly: $c = 1$

The robot begins with $\mu_0 = 0, \sigma_0 = 0...$
Notice when $x_t = 2$ we get an erroneous sensor value of $z = 4$. The new belief is closer to 2 than 4 because $\bar{\sigma} < q$.
Consider a robot constrained to move along a 1-D track. We wish to track the robot’s position and speed over time. The state vector is,

\[x_t = \begin{bmatrix} p_t \\ v_t \end{bmatrix} \]

where \(p_t \) is position and \(v_t \) is velocity. The control input, \(u_t \), is a force applied on the robot, which has a mass of \(m \). From Newton’s second law we know that \(force = mass \times acceleration \). Thus,

\[u = m \frac{dv}{dt} \]

which means that the acceleration \(\frac{dv}{dt} = \frac{u}{m} \). We will assume that the time period between discrete updates, \(\Delta t \), is sufficiently small such that,

\[\frac{dv}{dt} \approx \frac{v_t - v_{t-1}}{\Delta t} \]
Given these assumptions we can give update equations for our two main variables,

\[
\begin{align*}
 p_t &= p_{t-1} + \Delta t \nu_{t-1} + \text{Noise} \\
 \nu_t &= \nu_{t-1} + \frac{\Delta t}{m} u_t + \text{Noise}
\end{align*}
\]

In order to apply the Kalman filter, we must write these equations together in matrix form,

\[
\begin{bmatrix}
 p_t \\
 \nu_t
\end{bmatrix} =
\begin{bmatrix}
 1 & \Delta t \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 p_{t-1} \\
 \nu_{t-1}
\end{bmatrix} +
\begin{bmatrix}
 0 \\
 \Delta t/m
\end{bmatrix} u_t + \epsilon_t
\]

where \(\epsilon_t \) represents additive Gaussian noise with covariance matrix \(R_t \).

This equation is now in the standard form required by the Kalman filter:

\[
x_t = A_t x_{t-1} + B_t u_t + \epsilon_t
\]

Assume that this robot is also equipped with a position sensor (subject to noise of course)
The standard form for generating measurements is as follows,

\[z_t = C_t x_t + \delta_t \]

In our case the matrix \(C_t \) is quite simple,

\[z_t = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix} + \delta_t \]

where \(\delta_t \) represents Gaussian noise with covariance matrix \(Q_t \). In this case, \(Q_t \) is just a variance.

The Kalman filter can now be applied. The parameters we will use are as follows:

- Covariance matrix of motion equation: \(R = \begin{bmatrix} 0.2 & 0.05 \\ 0.05 & 0.1 \end{bmatrix} \)
- Variance of measurement equation: \(Q = 0.5 \)
- Mass of robot: \(m = 1 \)
- Time step: \(\Delta t = 1 \)
DEMO IN MATLAB
Properties of Kalman filters:

- Kalman filters are highly efficient
 - Cost of matrix inversion on line 4: $O(k^{2.376})$
 - Cost of multiplying $n \times n$ matrices: $O(n^2)$
- Optimal for linear Gaussian systems...
- Unfortunately, most robotic systems are non-linear!
- For non-linear systems you can linearize and apply the Extended Kalman Filter