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Introduction

@ The Kalman filter is perhaps the most widely-known implementation
of Bayes filter

@ Numerous applications outside of robot localization

@ Based upon a Gaussian belief representation

o Belief represented as the mean u; and covariance matrix X; of the
Guassian

@ Assumes that the system update equations are linear
o Non-linearity handled by linearization: The Extended Kalman Filter

COMP 4766/6912 (MUN) Localization: Kalman Filter July 11, 2018 2/12



Assumptions

@ "“The system” is some process evolving over time, through control
inputs u; and measurements z;
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Assumptions

@ "“The system” is some process evolving over time, through control
inputs u; and measurements z;

@ It has an unknown state x; and unknown past state x;_1

@ X, Uy, and z; are all column vectors with n, m, and k elements,
respectively
@ We assume that x; evolves through the following linear update
equation,
Xt = Aexe—1 + Brur + €

@ A; is a matrix of size n X n

@ B; is a matrix of size n x m
@ ¢; is a Gaussian random vector of size n
e Zero mean and covariance matrix R;
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@ The measurements z; are assumed to be another linear function of
the system state,
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@ C; is a matrix of size k X n
@ J; is a Gaussian random vector of size k

e Zero mean and covariance matrix Q

@ It is necessary for the noise vectors (€, €1, ... €, 0o, 91, ..., O¢) to
be mutually independent.
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@ The measurements z; are assumed to be another linear function of
the system state,
Zy = CtXt + 51-

@ C; is a matrix of size k X n
@ J; is a Gaussian random vector of size k

e Zero mean and covariance matrix Q

@ It is necessary for the noise vectors (€, €1, ... €, 0o, 91, ..., O¢) to
be mutually independent.

bel(xt) is represented by mean u; and covariance matrix X;

@ The initial belief bel(xp) must have a Gaussian p.d.f with mean g
and covariance matrix X g

o If the above assumptions hold, the belief bel(x;) will always be
Gaussian

COMP 4766/6912 (MUN) Localization: Kalman Filter July 11, 2018 4/12



The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
(2] ,E_Lt = Atpte—1 + Bru
Q@ X:= Atzt—lA;r + R:
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
Q@ it = Atpe—1 + Brug

Q@ .= Atzt—lA;r + Rt

Q Ki=%5.CGI(GECT+ @)t
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
fit = Agpie—1 + Brug

Y =AY 1A + R

K = itCtT(CtitCtT + Qt)fl
pe = fie + Ke(ze — Cefie)

0000
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
fit = Agpie—1 + Brug

Y =AY 1A + R

K = itCtT(CtitCtT + Qt)fl
pe = fit + Ke(zt - Cefir)

Y =(1 - K G)Xy

©0000
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
fit = Agpie—1 + Brug

Y =AY 1A + R

K =5S.CT(CECT + Q) !
pe = fit + Ke(zt - Cefir)

Y =(1 - K G)Xy

return fig, 2

00000
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
fit = Agpie—1 + Brug

Y =AY 1A + R
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pe = fit + Ke(zt - Cefir)

Y =(1 - K G)Xy

return fig, 2

00000

Lines 2 and 3 implement the prediction step, which determines bel(x;).
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Lines 2 and 3 implement the prediction step, which determines bel(x;).

Lines 4 - 6 implement the measurement update, which incorporates z; to
determine bel(x;)
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
fit = Agpie—1 + Brug

Y =AY 1A + R

K =5S.CT(CECT + Q) !
pe = fit + Ke(zt - Cefir)

Y =(1 - K G)Xy

return fig, 2

00000

Lines 2 and 3 implement the prediction step, which determines bel(x;).

Lines 4 - 6 implement the measurement update, which incorporates z; to
determine bel(x¢). On line 4 the Kalman gain, K, is computed
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
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Lines 2 and 3 implement the prediction step, which determines bel(x;).

Lines 4 - 6 implement the measurement update, which incorporates z; to
determine bel(x;). On line 4 the Kalman gain, K;, is computed. K;
specifies the degree of trust placed in z; over bel(x).

On line 5 the actual measurement z; is compared with the measurement
prediction C:fi;

COMP 4766/6912 (MUN) Localization: Kalman Filter July 11, 2018 5/12



The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
fit = Agpie—1 + Brug

Y =AY 1A + R

K =5S.CT(CECT + Q) !
pe = fit + Ke(zt - Cefir)

Y =(1 - K G)Xy

return fig, 2

00000

Lines 2 and 3 implement the prediction step, which determines bel(x;).

Lines 4 - 6 implement the measurement update, which incorporates z; to
determine bel(x;). On line 4 the Kalman gain, K;, is computed. K;
specifies the degree of trust placed in z; over bel(x).

On line 5 the actual measurement z; is compared with the measurement
prediction C:fi;. This difference is known as the innovation
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The Kalman Filter Algorithm

Q Kalman_Filter(ps—1,X¢—1, U, z¢)
fit = Agpie—1 + Brug

Y =AY 1A + R

K =5S.CT(CECT + Q) !
pe = fit + Ke(zt - Cefir)

Y =(1 - K G)Xy

return fig, 2

00000

Lines 2 and 3 implement the prediction step, which determines bel(x;).

Lines 4 - 6 implement the measurement update, which incorporates z; to
determine bel(x;). On line 4 the Kalman gain, K;, is computed. K;
specifies the degree of trust placed in z; over bel(x).

On line 5 the actual measurement z; is compared with the measurement
prediction C:fi;. This difference is known as the innovation. It describes
how different z; is from what was expected.
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Example: Simple 1-D Robot

We apply the Kalman filter to a simple robot living in a 1-D world
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“state vector” is just the scalar position x. The matrices A;, B, and C;
are assumed constant and 1-D—they reduce to scalars a, b, and c. The

covariance matrices R; and Q; are also reduced to scalars r and q. (Here,
r=20.25and g =1)
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“state vector” is just the scalar position x. The matrices A;, B, and C;
are assumed constant and 1-D—they reduce to scalars a, b, and c. The

covariance matrices R; and Q; are also reduced to scalars r and q. (Here,
r=20.25and g =1)

We assume that unless it is commanded to move, the robot will maintain
its current position: a =1
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The control signal u; is the distance the robot is commanded to move:
b =1 (the robot obeys and moves the commanded distance)
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are assumed constant and 1-D—they reduce to scalars a, b, and c. The
covariance matrices R; and Q; are also reduced to scalars r and q. (Here,
r=20.25and g =1)

We assume that unless it is commanded to move, the robot will maintain
its current position: a =1

The control signal u; is the distance the robot is commanded to move:
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The robot has a position sensor which gives 1-D position directly: ¢ =1
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Example: Simple 1-D Robot

We apply the Kalman filter to a simple robot living in a 1-D world. The
“state vector” is just the scalar position x. The matrices A;, B, and C;
are assumed constant and 1-D—they reduce to scalars a, b, and c. The
covariance matrices R; and Q; are also reduced to scalars r and q. (Here,
r=20.25and g =1)

We assume that unless it is commanded to move, the robot will maintain
its current position: a =1

The control signal u; is the distance the robot is commanded to move:
b =1 (the robot obeys and moves the commanded distance)

The robot has a position sensor which gives 1-D position directly: ¢ =1

The robot begins with pg = 0,09 = 0...
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xt=0:u=0,z=0 xt=1:u=1z=1

Notice when x; = 2 we get an erroneous sensor value of z = 4



xt=0:u=0,z=0 xt=1:u=1z=1

Notice when x; = 2 we get an erroneous sensor value of z = 4. The new belief is closer to 2

than 4 because 7 < g



Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track
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Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track. We wish to track
the robot's position and speed over time. The state vector is,

Xt:[Pt]
Vi

where p; is position and v; is velocity

COMP 4766/6912 (MUN) Localization: Kalman Filter July 11, 2018 8 /12



Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track. We wish to track
the robot's position and speed over time. The state vector is,

X; = [ bt ]
Vi
where p; is position and v; is velocity. The control input, u;, is a force
applied on the robot, which has a mass of m
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Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track. We wish to track
the robot's position and speed over time. The state vector is,

Xt:[Pt]
Vi

where p; is position and v; is velocity. The control input, u;, is a force
applied on the robot, which has a mass of m. From Newton’s second law
we know that force = mass x acceleration. Thus,
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Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track. We wish to track
the robot's position and speed over time. The state vector is,

Xt:[Pt]
Vi

where p; is position and v; is velocity. The control input, u;, is a force

applied on the robot, which has a mass of m. From Newton’s second law
we know that force = mass x acceleration. Thus,

dv
u=m—

dt

which means that the acceleration % = %
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Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track. We wish to track
the robot's position and speed over time. The state vector is,

Xt:[Pt]
Vi

where p; is position and v; is velocity. The control input, u;, is a force

applied on the robot, which has a mass of m. From Newton’s second law
we know that force = mass x acceleration. Thus,

u=m-—

dt

which means that the acceleration 4% =

+ = - We will assume that the time
period between discrete updates, At, is sufficiently small such that,
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Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track. We wish to track
the robot's position and speed over time. The state vector is,

Xt:[Pt]
Vi

where p; is position and v; is velocity. The control input, u;, is a force

applied on the robot, which has a mass of m. From Newton’s second law
we know that force = mass x acceleration. Thus,

u=m-—

dt

which means that the acceleration 4% =

+ = - We will assume that the time
period between discrete updates, At, is sufficiently small such that,

dv Vi Ve
dt ~ At
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Given these assumptions we can give update equations for our two main
variables,
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise

At .
Vi = Vi_1+ —u; + Noise
m
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise
At .
Vi = Vi_1+ —u; + Noise
m

In order to apply the Kalman filter, we must write these equations
together in matrix form,
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise

At .
Vi = Vi_1+ —u; + Noise
m

In order to apply the Kalman filter, we must write these equations
together in matrix form,

Pt 1 At pt—1 0
)= Lo Il s e
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise
At .
Vi = Vi_1+ —u; + Noise
m

In order to apply the Kalman filter, we must write these equations
together in matrix form,

pt | | 1 At pt—1 0
)= Lo Il s e

where €; represents additive Gaussian noise with covariance matrix R;
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise

At .
Vi = Vi_1+ —u; + Noise
m

In order to apply the Kalman filter, we must write these equations
together in matrix form,

pt | | 1 At pt—1 0
)= Lo Il s e

where €; represents additive Gaussian noise with covariance matrix R;.
This equation is now in the standard form required by the Kalman filter:
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise
At .
Vi = Vi_1+ —u; + Noise
m

In order to apply the Kalman filter, we must write these equations
together in matrix form,

pt | | 1 At pt—1 0
)= Lo Il s e

where €; represents additive Gaussian noise with covariance matrix R;.
This equation is now in the standard form required by the Kalman filter:

Xt = Aexe—1 + Bruy + €;
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Given these assumptions we can give update equations for our two main
variables,

pr = pi—1+ Atvi_1 + Noise
At .

Vi = Vi_1+ —u; + Noise
m

In order to apply the Kalman filter, we must write these equations
together in matrix form,

pt | | 1 At pt—1 0
=l A LA e
where €; represents additive Gaussian noise with covariance matrix R;.
This equation is now in the standard form required by the Kalman filter:

Xt = Aexe—1 + Bruy + €;

Assume that this robot is also equipped with a position sensor (subject to
noise of course)...
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The standard form for generating measurements is as follows,

Zy = CtXt + (St
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The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,
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The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,

A:um{ﬁ}+&
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The standard form for generating measurements is as follows,
Zy = CtXt + (St
In our case the matrix C; is quite simple,

A:um{ﬁ}+&

where §; represents Gaussian noise with covariance matrix Q;
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The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,
A:um{“}+&
Vi

where §; represents Gaussian noise with covariance matrix Q;. In this case,
Q; is just a variance
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The standard form for generating measurements is as follows,
Zy = CtXt + (St
In our case the matrix C; is quite simple,

A:um{ﬁ}+@

where §; represents Gaussian noise with covariance matrix Q;. In this case,
Q: is just a variance.

The Kalman filter can now be applied
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The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,
A:um{“}+@
Ve

where §; represents Gaussian noise with covariance matrix Q;. In this case,
Q: is just a variance.

The Kalman filter can now be applied. The parameters we will use are as
follows:
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The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,
A:um{“}+@
Ve

where §; represents Gaussian noise with covariance matrix Q;. In this case,
Q: is just a variance.

The Kalman filter can now be applied. The parameters we will use are as
follows:
0.05 0.1

@ Covariance matrix of motion equation: R = [ 0.2 0.05 }
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The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,
A:um{“}+@
Ve

where §; represents Gaussian noise with covariance matrix Q;. In this case,
Q: is just a variance.

The Kalman filter can now be applied. The parameters we will use are as
follows:

@ Covariance matrix of motion equation: R = 0.2 0.05
q T 1005 01

@ Variance of measurement equation: @ = 0.5
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The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,
A:um{“}+@
Ve

where §; represents Gaussian noise with covariance matrix Q;. In this case,
Q: is just a variance.

The Kalman filter can now be applied. The parameters we will use are as
follows:

@ Covariance matrix of motion equation: R = 0.2 0.05
q T 1005 01

@ Variance of measurement equation: @ = 0.5
@ Mass of robot: m=1

COMP 4766/6912 (MUN) Localization: Kalman Filter July 11, 2018 10 / 12



The standard form for generating measurements is as follows,
zt = Cex¢ + 0t

In our case the matrix C; is quite simple,
A:um{“}+@
Ve

where §; represents Gaussian noise with covariance matrix Q;. In this case,
Q: is just a variance.

The Kalman filter can now be applied. The parameters we will use are as
follows:

@ Covariance matrix of motion equation: R = 0.2 0.05
q T 1005 01

@ Variance of measurement equation: @ = 0.5
@ Mass of robot: m=1
@ Time step: At =1
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DEMO IN MATLAB
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Properties of Kalman filters:

o Kalman filters are highly efficient
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Properties of Kalman filters:

o Kalman filters are highly efficient

o Cost of matrix inversion on line 4: O(k*37°)
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Properties of Kalman filters:

o Kalman filters are highly efficient

o Cost of matrix inversion on line 4: O(
o Cost of multiplying n x n matrices: O(n?)

k2.376)
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Properties of Kalman filters:

o Kalman filters are highly efficient

o Cost of matrix inversion on line 4: O(
o Cost of multiplying n x n matrices: O(n?)

k2.376)

@ Optimal for linear Gaussian systems...
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Properties of Kalman filters:

o Kalman filters are highly efficient

o Cost of matrix inversion on line 4: O(
o Cost of multiplying n x n matrices: O(n?)

k2.376)

@ Optimal for linear Gaussian systems...

@ Unfortunately, most robotic systems are non-linear!
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Properties of Kalman filters:

o Kalman filters are highly efficient

o Cost of matrix inversion on line 4: O(k%37°)
o Cost of multiplying n x n matrices: O(n?)

@ Optimal for linear Gaussian systems...
@ Unfortunately, most robotic systems are non-linear!

@ For non-linear systems you can linearize and apply the Extended
Kalman Filter
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