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Introduction

The Kalman filter is perhaps the most widely-known implementation
of Bayes filter

Numerous applications outside of robot localization

Based upon a Gaussian belief representation

Belief represented as the mean µt and covariance matrix Σt of the
Guassian

Assumes that the system update equations are linear

Non-linearity handled by linearization: The Extended Kalman Filter
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Assumptions

“The system” is some process evolving over time, through control
inputs ut and measurements zt

It has an unknown state xt and unknown past state xt−1

xt , ut , and zt are all column vectors with n, m, and k elements,
respectively

We assume that xt evolves through the following linear update
equation,

xt = Atxt−1 + Btut + εt

At is a matrix of size n × n

Bt is a matrix of size n ×m

εt is a Gaussian random vector of size n

Zero mean and covariance matrix Rt
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The measurements zt are assumed to be another linear function of
the system state,

zt = Ctxt + δt

Ct is a matrix of size k × n

δt is a Gaussian random vector of size k

Zero mean and covariance matrix Qt

It is necessary for the noise vectors (ε0, ε1, . . . εt , δ0, δ1, . . . , δt) to
be mutually independent.

bel(xt) is represented by mean µt and covariance matrix Σt

The initial belief bel(x0) must have a Gaussian p.d.f with mean µ0

and covariance matrix Σ0

If the above assumptions hold, the belief bel(xt) will always be
Gaussian
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The Kalman Filter Algorithm

1 Kalman Filter(µt−1,Σt−1, ut , zt)

2 µ̄t = Atµt−1 + Btut
3 Σ̄t = AtΣt−1A

T
t + Rt

4 Kt = Σ̄tC
T
t (CtΣ̄tC

T
t + Qt)

−1

5 µt = µ̄t + Kt(zt − Ct µ̄t)
6 Σt = (I − KtCt)Σ̄t

7 return µt , Σt

Lines 2 and 3 implement the prediction step, which determines bel(xt).

Lines 4 - 6 implement the measurement update, which incorporates zt to
determine bel(xt). On line 4 the Kalman gain, Kt , is computed. Kt

specifies the degree of trust placed in zt over bel(xt).

On line 5 the actual measurement zt is compared with the measurement
prediction Ct µ̄t . This difference is known as the innovation. It describes
how different zt is from what was expected.
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Example: Simple 1-D Robot

We apply the Kalman filter to a simple robot living in a 1-D world

. The
“state vector” is just the scalar position x . The matrices At , Bt , and Ct

are assumed constant and 1-D—they reduce to scalars a, b, and c . The
covariance matrices Rt and Qt are also reduced to scalars r and q. (Here,
r = 0.25 and q = 1)

We assume that unless it is commanded to move, the robot will maintain
its current position: a = 1

The control signal ut is the distance the robot is commanded to move:
b = 1 (the robot obeys and moves the commanded distance)

The robot has a position sensor which gives 1-D position directly: c = 1

The robot begins with µ0 = 0, σ0 = 0...
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Example: Another 1-D Robot, but with 2-D State

Consider a robot constrained to move along a 1-D track

. We wish to track
the robot’s position and speed over time. The state vector is,

xt =

[
pt
vt

]
where pt is position and vt is velocity. The control input, ut , is a force
applied on the robot, which has a mass of m. From Newton’s second law
we know that force = mass × acceleration. Thus,

u = m
dv

dt

which means that the acceleration dv
dt = u

m . We will assume that the time
period between discrete updates, ∆t, is sufficiently small such that,

dv

dt
≈ vt − vt−1

∆t
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Given these assumptions we can give update equations for our two main
variables,

pt = pt−1 + ∆t vt−1 + Noise

vt = vt−1 +
∆t

m
ut + Noise

In order to apply the Kalman filter, we must write these equations
together in matrix form,[

pt
vt

]
=

[
1 ∆t
0 1

] [
pt−1

vt−1

]
+

[
0

∆t
m

]
ut + εt

where εt represents additive Gaussian noise with covariance matrix Rt .
This equation is now in the standard form required by the Kalman filter:

xt = Atxt−1 + Btut + εt

Assume that this robot is also equipped with a position sensor (subject to
noise of course)...
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The standard form for generating measurements is as follows,

zt = Ctxt + δt

In our case the matrix Ct is quite simple,

zt = [1 0]

[
pt
vt

]
+ δt

where δt represents Gaussian noise with covariance matrix Qt . In this case,
Qt is just a variance.

The Kalman filter can now be applied. The parameters we will use are as
follows:

Covariance matrix of motion equation: R =

[
0.2 0.05

0.05 0.1

]
Variance of measurement equation: Q = 0.5

Mass of robot: m = 1

Time step: ∆t = 1
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DEMO IN MATLAB
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Properties of Kalman filters:

Kalman filters are highly efficient

Cost of matrix inversion on line 4: O(k2.376)
Cost of multiplying n × n matrices: O(n2)

Optimal for linear Gaussian systems...

Unfortunately, most robotic systems are non-linear!

For non-linear systems you can linearize and apply the Extended
Kalman Filter
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