7. [12]

Consider again the pipe-cleaning robot from the previous question. This robot and its control system have been modified. Firstly, the robot's belief representation has been changed to the following discrete representation:

0	1	2	3	4
$\mathrm{p}\left(x_{t}=0-10\right)$	$\mathrm{p}\left(x_{t}=10-20\right)$	$\mathrm{p}\left(x_{t}=20-30\right)$	$\mathrm{p}\left(x_{t}=30-40\right)$	$\mathrm{p}\left(x_{t}=40-50\right)$

5	6	7	8	9
$\mathrm{p}\left(x_{t}=50-60\right)$	$\mathrm{p}\left(x_{t}=60-70\right)$	$\mathrm{p}\left(x_{t}=70-80\right)$	$\mathrm{p}\left(x_{t}=80-90\right)$	$\mathrm{p}\left(x_{t}=90-100\right)$

You may ignore any issues pertaining to the coarseness of this representation in answering the following questions.
(a) [6] The robot cleans the pipe by travelling in turn to each end of the pipe. The motion model for the robot's forward travel is as follows:

$$
p\left(x_{t}=i \mid x_{t-1}=j\right)= \begin{cases}0.25 & \text { for } i=j \\ 0.75 & \text { for } i=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

Assume that the robot is travelling forwards and that its former belief state bel $\left(x_{t-1}\right)$ is as follows:

0	1	2	3	4	5	6	7	8	9
0	0	0.25	0.25	0	0	0.25	0	0.25	0

Compute $\overline{\operatorname{bel}}\left(x_{t}\right)$ by filling in the table below

0	1	2	3	4	5	6	7	8	9
0									

