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The Extended Kalman Filter

The assumption that the next state is a linear function of the previous
state is often invalid (observation function also typically non-linear)

The Extended Kalman Filter (EKF) finds linear approximations to
these non-linear functions

First consider the impact on a Gaussian distributed random variable
X passing through a function:

Linear function: y = ax + b

The resulting r.v. Y has mean aµ + b and variance a2σ2

Part (a) of the figure on the next page

Non-linear function: y = g(x)

Distribution no longer Gaussian!
Part (b) of the figure on the next page
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Figure 3.3 (a) Linear and (b) nonlinear transformation of a Gaussian random vari-

able. The lower right plots show the density of the original random variable,X . This

random variable is passed through the function displayed in the upper right graphs

(the transformation of the mean is indicated by the dotted line). The density of the

resulting random variable Y is plotted in the upper left graphs.



We assume that the system state update and measurement equations
are non-linear,

xt = g(ut , xt−1) + εt

zt = h(xt) + δt

We will apply first-order Taylor series approximations to the functions
g and h; These will be linear equations

First, recall the Taylor series

f (x) = f (c) + f ′(c)(x − c) +
1

2!
f ′′(c)(x − c)2 + · · ·

The Taylor series gives you f (x) when you only know f (c), derivatives
of f at c , and (x − c)

A first-order Taylor series approximation of g(ut , xt−1),

g(ut , xt−1) ≈ g(ut , µt−1) + g ′(ut , µt−1) (xt−1 − µt−1)

Approximation of g at xt−1 made at most likely value of xt−1: µt−1
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However, g is typically a vector function, hence we need the vector form of
the Taylor series approximation,

g(ut , xt−1) ≈ g(ut , µt−1) + Gt (xt−1 − µt−1)

Gt is the n × n Jacobian matrix of first derivatives of g . What is this
Jacobian matrix?

In general, if we have a function where the input is a vector, x , of length
n, and the output is a vector, y , of length m, the Jacobian is,

∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn


You can think of the Jacobian as the derivative of a matrix.
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A linear approximation is also made to h(xt),

h(xt) ≈ h(µ̄t) + h′(µ̄t) (xt − µ̄t)

Approximation of h at xt made at most likely value of xt after the
prediction step: µ̄t
Let Ht = h′(µ̄t)

Ht is the k × n Jacobian matrix of first derivatives of h
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The EKF Algorithm

1 EKF(µt−1,Σt−1, ut , zt)

2 µ̄t = g(ut , µt−1)

3 Σ̄t = GtΣt−1G
T
t + Rt

4 Kt = Σ̄tH
T
t (HtΣ̄tH

T
t + Qt)

−1

5 µt = µ̄t + Kt(zt − h(µ̄t))

6 Σt = (I − KtHt)Σ̄t

7 return µt , Σt

Differences from Kalman filter algorithm:

The Jacobian Gt replaces the matrices At and Bt . The Jacobian Ht

replaces Ct . On line 2 the prediction is made directly through g . Similarly
on line 5 the measurement prediction Ct µ̄t is replaced by h(µ̄t).
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Figure 3.4 Illustration of linearization applied by the EKF. Instead of passing the

Gaussian through the nonlinear function g, it is passed through a linear approxima-

tion of g. The linear function is tangent to g at the mean of the original Gaussian.

The resulting Gaussian is shown as the dashed line in the upper left graph. The lin-

earization incurs an approximation error, as indicated by the mismatch between the

linearized Gaussian (dashed) and the Gaussian computed from the highly accurate

Monte-Carlo estimate (solid).
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Figure 3.5 Dependency of approximation quality on uncertainty. Both Gaussians

(lower right) have the same mean and are passed through the same nonlinear func-

tion (upper right). The higher uncertainty of the left Gaussian produces a more dis-

torted density of the resulting random variable (gray area in upper left graph). The

solid lines in the upper left graphs show the Gaussians extracted from these densities.

The dashed lines represent the Gaussians generated by the linearization applied by

the EKF.



Example: Differential Drive With No Sensors

In this example, we will consider only the prediction step of the EKF

,

1 EKF Prediction(µt−1,Σt−1, ut)

2 µt = g(ut , µt−1)

3 Σt = GtΣt−1G
T
t + Rt

4 return µt , Σt

The function g(ut , µt−1) comes from the forward kinematic equation for a
D-D robot:

ẋt = ξ̇I =
r

2

 cos(θ)(φ̇r + φ̇l)

sin(θ)(φ̇r + φ̇l)

(φ̇r − φ̇l)/l


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The robot has some discrete update rate ∆t

. In between updates, the two
wheels will roll by ∆φr and ∆φl . We define,

∆θ =
r(∆φr −∆φl)

2l
∆s =

r(∆φr + ∆φl)

2

The forward kinematic equation for discrete updates is,

xt = xt−1 +

 cos(θ + ∆θ)∆s
sin(θ + ∆θ)∆s

∆θ

 = g(ut , xt−1)

This equation is non-linear and does not fit the form required by the
Kalman filter. Step 2 of the EKF algorithm does not require any
linearization. Indeed, the equation above implements step 2 directly.

Step 3 involves finding the Jacobian Gt and the covariance matrix Rt

3. Σt = GtΣt−1G
T
t + Rt
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The forward kinematic equation for discrete updates is,

xt = xt−1 +

 cos(θ + ∆θ)∆s
sin(θ + ∆θ)∆s

∆θ

 = g(ut , xt−1)

This equation is non-linear and does not fit the form required by the
Kalman filter

. Step 2 of the EKF algorithm does not require any
linearization. Indeed, the equation above implements step 2 directly.

Step 3 involves finding the Jacobian Gt and the covariance matrix Rt
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(step 3 again)

Σt = GtΣt−1G
T
t + Rt

Gt is the Jacobian of g with respect to the input vector
[
x y θ

]
. It is

evaluated at µt−1, which is our current best guess for xt−1. It will be a
reasonable approximation as long as g is not too non-linear, and as long as
µt−1 is reasonably close to the true xt−1.

GtΣt−1G
T
t models the propagation of uncertainty from the last iteration

(see slide 7 from the notes on covariance matrices).

Gt =

[
∂g

∂x

∂g

∂y

∂g

∂θ

]

=

 1 0 − sin(θ + ∆θ)∆s
0 1 cos(θ + ∆θ)∆s
0 0 1


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Our next challenge will be to compute Rt , which models the uncertainty
introduced by the control signals: ∆φr and ∆φl .

To compute Rt we will assume that the errors in ∆φr and ∆φl are
independent. We define the following covariance matrix,

Σ∆ =

[
kr |∆φr | 0

0 kl |∆φl |

]
The larger the movement, the larger our uncertainty. Yet, this matrix is
not Rt . It describes our uncertainty in control space not in state space.

The control vector [∆φr ,∆φl ]
T passes through the function g . Therefore,

the covariance matrix Rt is formed by propagating Σ∆ through g . To
evaluate this uncertainty we determine the Jacobian of g with respect to
the control vector

[
∆φr ∆φl

]
. We will call this Jacobian, Jt ,

Rt = JtΣ∆JTt
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Rt = JtΣ∆JTt

Like Gt , Jt will be evaluated at the most likely value of xt−1: µt−1.

Jt =

[
∂g

∂∆φr

∂g

∂∆φl

]

=
r

2

 cos(θ + ∆θ)− f sin(θ + ∆θ) cos(θ + ∆θ) + f sin(θ + ∆θ)
sin(θ + ∆θ) + f cos(θ + ∆θ) sin(θ + ∆θ)− f cos(θ + ∆θ)

1
l −1

l


where f = ∆s

l .
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The plot below shows how the uncertainty grows for this example

. The
robot begins at [0, 0, 0]T and then moves to the right. It then turns by
90◦; continues straight; turns by −90◦; then continues straight again.
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The ellipses shown above are 50% confidence ellipses.
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Example: Incorporating Point Features

We now extend the previous example by incorporating sensors

. We assume
that the sensor observation zt is processed to yield a set of point features,

zt = f (z rawt ) =
{
f 1
t , f

2
t , . . .

}
=

{[
r1
t

φ1
t

]
,

[
r2
t

φ2
t

]
. . .

}
where rkt and φkt are the range and bearing of the kth feature.

We assume that these features are independent,

p(zt |xt ,m) =
∏
i

p(r it , φ
i
t |xt ,m)

Therefore we can break the measurement update step into a sequence of
steps. In each step we update the belief for one feature.
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The map m must be a feature-based map consisting of a list of features,

m = {m1,m2 . . .}

Assumption: We assume that all of the observed features can be correctly
corresponded with features in the map.

The following function defines the measurement model. It is formulated
such that the ith feature observed at time t corresponds to the jth feature
in the map (not all map features will be perceived at each time step).

z it =

[
r it
φit

]
=

[ √
(mj ,x − x)2 + (mj ,y − y)2

atan2(mj ,y − y ,mj ,x − x)− θ

]
+

[
εr
εφ

]
= h(xt)

where the ε terms represent zero-mean Gaussian error variables with
standard deviations σr and σφ.
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Consider the EKF measurement update:

4. Kt = Σ̄tH
T
t (HtΣ̄tH

T
t + Qt)

−1

5. µt = µ̄t + Kt(zt − h(µ̄t))

6. Σt = (I − KtHt)Σ̄t

We incorporate point features by replacing these steps with a loop over
observed features. Within this loop we predict the features that we should
observe, which are given by the measurement model applied to µ̄t ,

ẑ it =

[ √
(mj ,x − µ̄t,x)2 + (mj ,y − µ̄t,y )2

atan2(mj ,y − µ̄t,y ,mj ,x − µ̄t,x)− µ̄t,θ

]
= h(µ̄t)
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ẑ it =

[ √
(mj ,x − µ̄t,x)2 + (mj ,y − µ̄t,y )2

atan2(mj ,y − µ̄t,y ,mj ,x − µ̄t,x)− µ̄t,θ

]
= h(µ̄t)

COMP 6912 (MUN) Localization: The Extended Kalman Filter July 4, 2018 18 / 21



Consider the EKF measurement update:

4. Kt = Σ̄tH
T
t (HtΣ̄tH

T
t + Qt)

−1

5. µt = µ̄t + Kt(zt − h(µ̄t))

6. Σt = (I − KtHt)Σ̄t

We incorporate point features by replacing these steps with a loop over
observed features. Within this loop we predict the features that we should
observe, which are given by the measurement model applied to µ̄t ,
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The measurement update (steps 4-6) of the standard EKF algorithm is
now replaced with the following loop:

for all observed features z it = (r it , φ
i
t)

j = The map index of feature i

H i
t =

[
−mj,x−µ̄t,x√

q −mj,y−µ̄t,y√
q 0

mj,y−µ̄t,y
q −mj,x−µ̄t,x

q −1

]
where q = (x −mj ,x)2 + (y −mj ,y )2

Kt = Σ̄tH
T
t (HtΣ̄tH

T
t + Qt)

−1

µ̄t = µ̄t + Kt(zt − h(µ̄t))

Σ̄t = (I − KtHt)Σ̄t

end for

µt = µ̄t

Σt = Σ̄t
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The plot below shows the belief state of a robot moving to the right

. The
three black circles are landmarks. The red stars surrounding each
landmark are the perceived positions of the landmark over time.
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Without incorporating the measurement update we would have the
following situation,
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