Localization: Part 7 The Extended Kalman Filter

Computer Science 6912

Department of Computer Science Memorial University of Newfoundland

July 4, 2018

• The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions
- First consider the impact on a Gaussian distributed random variable X passing through a function:

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions
- First consider the impact on a Gaussian distributed random variable X passing through a function:
 - Linear function: y = ax + b

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions
- First consider the impact on a Gaussian distributed random variable X passing through a function:
 - Linear function: y = ax + b
 - The resulting r.v. Y has mean $a\mu + b$ and variance $a^2\sigma^2$

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions
- First consider the impact on a Gaussian distributed random variable X passing through a function:
 - Linear function: y = ax + b
 - The resulting r.v. Y has mean $a\mu + b$ and variance $a^2\sigma^2$
 - Part (a) of the figure on the next page

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions
- First consider the impact on a Gaussian distributed random variable X passing through a function:
 - Linear function: y = ax + b
 - The resulting r.v. Y has mean $a\mu + b$ and variance $a^2\sigma^2$
 - Part (a) of the figure on the next page
 - Non-linear function: y = g(x)

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions
- First consider the impact on a Gaussian distributed random variable X passing through a function:
 - Linear function: y = ax + b
 - The resulting r.v. Y has mean $a\mu + b$ and variance $a^2\sigma^2$
 - Part (a) of the figure on the next page
 - Non-linear function: y = g(x)
 - Distribution no longer Gaussian!

- The assumption that the next state is a linear function of the previous state is often invalid (observation function also typically non-linear)
- The Extended Kalman Filter (EKF) finds linear approximations to these non-linear functions
- First consider the impact on a Gaussian distributed random variable X passing through a function:
 - Linear function: y = ax + b
 - The resulting r.v. Y has mean $a\mu + b$ and variance $a^2\sigma^2$
 - Part (a) of the figure on the next page
 - Non-linear function: y = g(x)
 - Distribution no longer Gaussian!
 - Part (b) of the figure on the next page

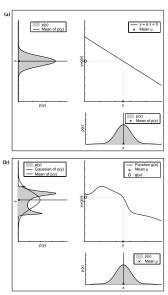
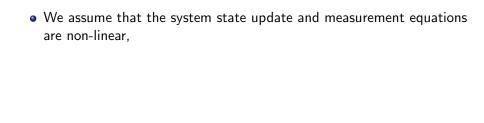
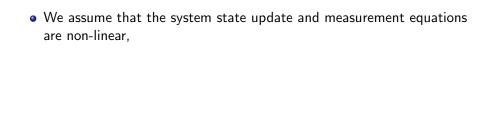


Figure 3.3 (a) Linear and (b) nonlinear transformation of a Gaussian random variable. The lower right plots show the density of the original random variable, X. This random variable is passed through the function displayed in the upper right graphs (the transformation of the mean is indicated by the dotted line). The density of the resulting random variable Y is plotted in the upper left graphs.





$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

ullet We will apply first-order Taylor series approximations to the functions g and h

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

ullet We will apply first-order Taylor series approximations to the functions g and h

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

 We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$f(x) = f(c) + f'(c)(x - c) + \frac{1}{2!}f''(c)(x - c)^2 + \cdots$$

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$f(x) = f(c) + f'(c)(x - c) + \frac{1}{2!}f''(c)(x - c)^{2} + \cdots$$

The Taylor series gives you f(x) when you only know f(c), derivatives of f at c, and (x - c)

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$f(x) = f(c) + f'(c)(x - c) + \frac{1}{2!}f''(c)(x - c)^{2} + \cdots$$

The Taylor series gives you f(x) when you only know f(c), derivatives of f at c, and (x - c)

• A first-order Taylor series approximation of $g(u_t, x_{t-1})$,

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$f(x) = f(c) + f'(c)(x - c) + \frac{1}{2!}f''(c)(x - c)^{2} + \cdots$$

The Taylor series gives you f(x) when you only know f(c), derivatives of f at c, and (x - c)

• A first-order Taylor series approximation of $g(u_t, x_{t-1})$,

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$f(x) = f(c) + f'(c)(x - c) + \frac{1}{2!}f''(c)(x - c)^{2} + \cdots$$

The Taylor series gives you f(x) when you only know f(c), derivatives of f at c, and (x - c)

• A first-order Taylor series approximation of $g(u_t, x_{t-1})$,

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + g'(u_t, \mu_{t-1}) (x_{t-1} - \mu_{t-1})$$

$$x_t = g(u_t, x_{t-1}) + \epsilon_t$$

 $z_t = h(x_t) + \delta_t$

- We will apply first-order Taylor series approximations to the functions g and h; These will be linear equations
- First, recall the Taylor series

$$f(x) = f(c) + f'(c)(x - c) + \frac{1}{2!}f''(c)(x - c)^{2} + \cdots$$

The Taylor series gives you f(x) when you only know f(c), derivatives of f at c, and (x - c)

• A first-order Taylor series approximation of $g(u_t, x_{t-1})$,

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + g'(u_t, \mu_{t-1}) (x_{t-1} - \mu_{t-1})$$

• Approximation of g at x_{t-1} made at most likely value of x_{t-1} : μ_{t-1}

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

 G_t is the $n \times n$ **Jacobian** matrix of first derivatives of g

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

 G_t is the $n \times n$ **Jacobian** matrix of first derivatives of g. What is this Jacobian matrix?

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

 G_t is the $n \times n$ **Jacobian** matrix of first derivatives of g. What is this Jacobian matrix?

In general, if we have a function where the input is a vector, x, of length n, and the output is a vector, y, of length m, the Jacobian is,

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

 G_t is the $n \times n$ **Jacobian** matrix of first derivatives of g. What is this Jacobian matrix?

In general, if we have a function where the input is a vector, x, of length n, and the output is a vector, y, of length m, the Jacobian is,

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

$$g(u_t, x_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1})$$

 G_t is the $n \times n$ **Jacobian** matrix of first derivatives of g. What is this Jacobian matrix?

In general, if we have a function where the input is a vector, \mathbf{x} , of length n, and the output is a vector, \mathbf{y} , of length m, the Jacobian is,

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

You can think of the Jacobian as the derivative of a matrix.

• A linear approximation is also made to $h(x_t)$,

• A linear approximation is also made to $h(x_t)$,

• A linear approximation is also made to $h(x_t)$,

$$h(x_t) \approx h(\bar{\mu}_t) + h'(\bar{\mu}_t) (x_t - \bar{\mu}_t)$$

• A linear approximation is also made to $h(x_t)$,

$$h(x_t) \approx h(\bar{\mu}_t) + h'(\bar{\mu}_t) (x_t - \bar{\mu}_t)$$

• Approximation of h at x_t made at most likely value of x_t after the prediction step: $\bar{\mu}_t$

• A linear approximation is also made to $h(x_t)$,

$$h(x_t) \approx h(\bar{\mu}_t) + h'(\bar{\mu}_t) (x_t - \bar{\mu}_t)$$

- Approximation of h at x_t made at most likely value of x_t after the prediction step: $\bar{\mu}_t$
- Let $H_t = h'(\bar{\mu}_t)$

• A linear approximation is also made to $h(x_t)$,

$$h(x_t) \approx h(\bar{\mu}_t) + h'(\bar{\mu}_t) (x_t - \bar{\mu}_t)$$

- Approximation of h at x_t made at most likely value of x_t after the prediction step: $\bar{\mu}_t$
- Let $H_t = h'(\bar{\mu}_t)$
 - H_t is the $k \times n$ **Jacobian** matrix of first derivatives of h

1 EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$

- $\bullet \mathsf{EKF}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\mathbf{\tilde{o}} \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^{\mathsf{T}} + R_t$

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\mathbf{\tilde{o}} \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^{\mathsf{T}} + R_t$

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\mathbf{\tilde{o}} \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\mathbf{\tilde{o}} \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\mathbf{\tilde{S}}_t = G_t \Sigma_{t-1} G_t^T + R_t$
- $\bullet \qquad K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$

- oreturn μ_t , Σ_t

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\mathbf{\tilde{o}} \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
- $\bullet \qquad K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$

- oreturn μ_t , Σ_t

Differences from Kalman filter algorithm:

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\mathbf{\tilde{o}} \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$

- oreturn μ_t , Σ_t

Differences from Kalman filter algorithm:

The Jacobian G_t replaces the matrices A_t and B_t

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\bar{\mu}_t = g(u_t, \mu_{t-1})$

- oreturn μ_t , Σ_t

Differences from Kalman filter algorithm:

The Jacobian G_t replaces the matrices A_t and B_t . The Jacobian H_t replaces C_t

- $\bullet \mathsf{EKF}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$
- $\bar{\mu}_t = g(u_t, \mu_{t-1})$
- $\mathbf{\tilde{o}} \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
- $\bullet \qquad K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$

- oreturn μ_t , Σ_t

Differences from Kalman filter algorithm:

The Jacobian G_t replaces the matrices A_t and B_t . The Jacobian H_t replaces C_t . On line 2 the prediction is made directly through g

- **1** EKF $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$

- oreturn μ_t , Σ_t

Differences from Kalman filter algorithm:

The Jacobian G_t replaces the matrices A_t and B_t . The Jacobian H_t replaces C_t . On line 2 the prediction is made directly through g. Similarly on line 5 the measurement prediction $C_t\bar{\mu}_t$ is replaced by $h(\bar{\mu}_t)$.

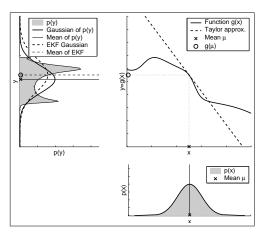


Figure 3.4 Illustration of linearization applied by the EKF. Instead of passing the Gaussian through the nonlinear function g, it is passed through a linear approximation of g. The linear function is tangent to g at the mean of the original Gaussian. The resulting Gaussian is shown as the dashed line in the upper left graph. The linearization incurs an approximation error, as indicated by the mismatch between the linearized Gaussian (dashed) and the Gaussian computed from the highly accurate Monte-Carlo estimate (solid).

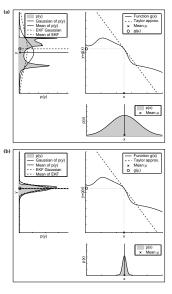


Figure 3.5 Dependency of approximation quality on uncertainty, Both Gaussians (lower right) have the same mean and are passed through the same nonlinear function (upper right). The higher uncertainty of the left Gaussian produces a more distorted density of the resulting random variable (gray area in upper left graph). The solid lines in the upper left graphs show the Gaussians extracted from these densities. The dashed lines represent the Gaussians generated by the linearization applied by the EKF.

In this example, we will consider only the prediction step of the EKF

In this example, we will consider only the prediction step of the EKF,

• EKF_Prediction $(\mu_{t-1}, \Sigma_{t-1}, u_t)$

In this example, we will consider only the prediction step of the EKF,

- **1** EKF_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t$)

In this example, we will consider only the prediction step of the EKF,

- **1** EKF_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t$)

In this example, we will consider only the prediction step of the EKF,

- **1** EKF_Prediction $(\mu_{t-1}, \Sigma_{t-1}, u_t)$
- $\mu_t = g(u_t, \mu_{t-1})$
- oreturn μ_t , Σ_t

In this example, we will consider only the prediction step of the EKF,

- **1** EKF_Prediction $(\mu_{t-1}, \Sigma_{t-1}, u_t)$

- oreturn μ_t , Σ_t

The function $g(u_t, \mu_{t-1})$ comes from the forward kinematic equation for a D-D robot:

In this example, we will consider only the prediction step of the EKF,

- EKF_Prediction $(\mu_{t-1}, \Sigma_{t-1}, u_t)$
- $\mu_t = g(u_t, \mu_{t-1})$
- oreturn μ_t , Σ_t

The function $g(u_t, \mu_{t-1})$ comes from the forward kinematic equation for a D-D robot:

$$\dot{x}_t = \dot{\xi}_I = \frac{r}{2} \begin{bmatrix} \cos(\theta)(\dot{\phi}_r + \dot{\phi}_I) \\ \sin(\theta)(\dot{\phi}_r + \dot{\phi}_I) \\ (\dot{\phi}_r - \dot{\phi}_I)/I \end{bmatrix}$$

In this example, we will consider only the prediction step of the EKF,

- EKF_Prediction $(\mu_{t-1}, \Sigma_{t-1}, u_t)$
- $\mu_t = g(u_t, \mu_{t-1})$
- oreturn μ_t , Σ_t

The function $g(u_t, \mu_{t-1})$ comes from the forward kinematic equation for a D-D robot:

$$\dot{x}_t = \dot{\xi}_I = \frac{r}{2} \begin{bmatrix} \cos(\theta)(\dot{\phi}_r + \dot{\phi}_I) \\ \sin(\theta)(\dot{\phi}_r + \dot{\phi}_I) \\ (\dot{\phi}_r - \dot{\phi}_I)/I \end{bmatrix}$$

The robot has some discrete update rate Δt

$$\Delta\theta = \frac{r(\Delta\phi_r - \Delta\phi_l)}{2l}$$

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \begin{bmatrix} \cos(\theta + \Delta\theta)\Delta s \\ \sin(\theta + \Delta\theta)\Delta s \\ \Delta\theta \end{bmatrix}$$

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \left[egin{array}{l} \cos(heta + \Delta heta) \Delta s \ \sin(heta + \Delta heta) \Delta s \ \Delta heta \end{array}
ight] = g(u_t, x_{t-1})$$

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \left[egin{array}{l} \cos(heta + \Delta heta) \Delta s \ \sin(heta + \Delta heta) \Delta s \ \Delta heta \end{array}
ight] = g(u_t, x_{t-1})$$

This equation is non-linear and does not fit the form required by the Kalman filter

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \left[egin{array}{l} \cos(heta + \Delta heta) \Delta s \ \sin(heta + \Delta heta) \Delta s \ \Delta heta \end{array}
ight] = g(u_t, x_{t-1})$$

This equation is non-linear and does not fit the form required by the Kalman filter. Step 2 of the EKF algorithm does not require any linearization

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \left[egin{array}{l} \cos(heta + \Delta heta) \Delta s \ \sin(heta + \Delta heta) \Delta s \ \Delta heta \end{array}
ight] = g(u_t, x_{t-1})$$

This equation is non-linear and does not fit the form required by the Kalman filter. Step 2 of the EKF algorithm does not require any linearization. Indeed, the equation above implements step 2 directly.

The robot has some discrete update rate Δt . In between updates, the two wheels will roll by $\Delta \phi_r$ and $\Delta \phi_I$. We define,

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \begin{bmatrix} \cos(\theta + \Delta\theta)\Delta s \\ \sin(\theta + \Delta\theta)\Delta s \\ \Delta\theta \end{bmatrix} = g(u_t, x_{t-1})$$

This equation is non-linear and does not fit the form required by the Kalman filter. Step 2 of the EKF algorithm does not require any linearization. Indeed, the equation above implements step 2 directly.

Step 3 involves finding the Jacobian G_t and the covariance matrix R_t

The robot has some discrete update rate Δt . In between updates, the two wheels will roll by $\Delta \phi_r$ and $\Delta \phi_I$. We define,

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \begin{bmatrix} \cos(\theta + \Delta\theta)\Delta s \\ \sin(\theta + \Delta\theta)\Delta s \\ \Delta\theta \end{bmatrix} = g(u_t, x_{t-1})$$

This equation is non-linear and does not fit the form required by the Kalman filter. Step 2 of the EKF algorithm does not require any linearization. Indeed, the equation above implements step 2 directly.

Step 3 involves finding the Jacobian G_t and the covariance matrix R_t

3.
$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

The robot has some discrete update rate Δt . In between updates, the two wheels will roll by $\Delta \phi_r$ and $\Delta \phi_I$. We define,

$$\Delta \theta = \frac{r(\Delta \phi_r - \Delta \phi_l)}{2l}$$
 $\Delta s = \frac{r(\Delta \phi_r + \Delta \phi_l)}{2}$

The forward kinematic equation for discrete updates is,

$$x_t = x_{t-1} + \begin{bmatrix} \cos(\theta + \Delta\theta)\Delta s \\ \sin(\theta + \Delta\theta)\Delta s \\ \Delta\theta \end{bmatrix} = g(u_t, x_{t-1})$$

This equation is non-linear and does not fit the form required by the Kalman filter. Step 2 of the EKF algorithm does not require any linearization. Indeed, the equation above implements step 2 directly.

Step 3 involves finding the Jacobian G_t and the covariance matrix R_t

3.
$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

(step 3 again)

$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

 G_t is the Jacobian of g with respect to the input vector $\begin{bmatrix} x & y & \theta \end{bmatrix}$

(step 3 again)
$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

 G_t is the Jacobian of g with respect to the input vector $\begin{bmatrix} x & y & \theta \end{bmatrix}$. It is evaluated at μ_{t-1} , which is our current best guess for x_{t-1}

(step 3 again)
$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

(step 3 again)
$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

 $G_t \Sigma_{t-1} G_t^T$ models the propagation of uncertainty from the last iteration (see slide 7 from the notes on covariance matrices)

$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

 $G_t \Sigma_{t-1} G_t^T$ models the propagation of uncertainty from the last iteration (see slide 7 from the notes on covariance matrices).

$$G_t = \left[\frac{\partial g}{\partial x} \frac{\partial g}{\partial y} \frac{\partial g}{\partial \theta}\right]$$

$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

 $G_t \Sigma_{t-1} G_t^T$ models the propagation of uncertainty from the last iteration (see slide 7 from the notes on covariance matrices).

$$G_{t} = \begin{bmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial \theta} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & -\sin(\theta + \Delta\theta)\Delta s \\ 0 & 1 & \cos(\theta + \Delta\theta)\Delta s \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Sigma_t = G_t \Sigma_{t-1} G_t^T + R_t$$

 $G_t \Sigma_{t-1} G_t^T$ models the propagation of uncertainty from the last iteration (see slide 7 from the notes on covariance matrices).

$$G_{t} = \begin{bmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial \theta} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & -\sin(\theta + \Delta\theta)\Delta s \\ 0 & 1 & \cos(\theta + \Delta\theta)\Delta s \\ 0 & 0 & 1 \end{bmatrix}$$

To compute R_t we will assume that the errors in $\Delta\phi_r$ and $\Delta\phi_l$ are independent

To compute R_t we will assume that the errors in $\Delta \phi_r$ and $\Delta \phi_I$ are independent. We define the following covariance matrix,

To compute R_t we will assume that the errors in $\Delta\phi_r$ and $\Delta\phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[egin{array}{cc} k_r |\Delta \phi_r| & 0 \ 0 & k_l |\Delta \phi_l| \end{array}
ight]$$

To compute R_t we will assume that the errors in $\Delta \phi_r$ and $\Delta \phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[\begin{array}{cc} k_r |\Delta \phi_r| & 0 \\ 0 & k_l |\Delta \phi_l| \end{array} \right]$$

The larger the movement, the larger our uncertainty

To compute R_t we will assume that the errors in $\Delta \phi_r$ and $\Delta \phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[\begin{array}{cc} k_r |\Delta \phi_r| & 0 \\ 0 & k_l |\Delta \phi_l| \end{array} \right]$$

The larger the movement, the larger our uncertainty. Yet, this matrix is not R_t

To compute R_t we will assume that the errors in $\Delta \phi_r$ and $\Delta \phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[\begin{array}{cc} k_r |\Delta \phi_r| & 0 \\ 0 & k_l |\Delta \phi_l| \end{array} \right]$$

The larger the movement, the larger our uncertainty. Yet, this matrix is not R_t . It describes our uncertainty in **control space** not in **state space**

To compute R_t we will assume that the errors in $\Delta\phi_r$ and $\Delta\phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[egin{array}{cc} k_r | \Delta \phi_r | & 0 \\ 0 & k_l | \Delta \phi_l | \end{array}
ight]$$

The larger the movement, the larger our uncertainty. Yet, this matrix is not R_t . It describes our uncertainty in **control space** not in **state space**.

The control vector $[\Delta \phi_r, \Delta \phi_l]^T$ passes through the function g

To compute R_t we will assume that the errors in $\Delta\phi_r$ and $\Delta\phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[egin{array}{cc} k_r | \Delta \phi_r | & 0 \\ 0 & k_l | \Delta \phi_l | \end{array}
ight]$$

The larger the movement, the larger our uncertainty. Yet, this matrix is not R_t . It describes our uncertainty in **control space** not in **state space**.

The control vector $[\Delta\phi_r,\Delta\phi_l]^T$ passes through the function g. Therefore, the covariance matrix R_t is formed by propagating Σ_Δ through g

To compute R_t we will assume that the errors in $\Delta\phi_r$ and $\Delta\phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[egin{array}{cc} k_r |\Delta\phi_r| & 0 \ 0 & k_I |\Delta\phi_I| \end{array}
ight]$$

The larger the movement, the larger our uncertainty. Yet, this matrix is not R_t . It describes our uncertainty in **control space** not in **state space**.

The control vector $[\Delta\phi_r,\Delta\phi_I]^T$ passes through the function g. Therefore, the covariance matrix R_t is formed by propagating Σ_Δ through g. To evaluate this uncertainty we determine the Jacobian of g with respect to the control vector $[\Delta\phi_r \quad \Delta\phi_I]$

To compute R_t we will assume that the errors in $\Delta\phi_r$ and $\Delta\phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[egin{array}{cc} k_r |\Delta \phi_r| & 0 \ 0 & k_l |\Delta \phi_l| \end{array}
ight]$$

The larger the movement, the larger our uncertainty. Yet, this matrix is not R_t . It describes our uncertainty in **control space** not in **state space**.

The control vector $[\Delta\phi_r,\Delta\phi_I]^T$ passes through the function g. Therefore, the covariance matrix R_t is formed by propagating Σ_Δ through g. To evaluate this uncertainty we determine the Jacobian of g with respect to the control vector $[\Delta\phi_r \quad \Delta\phi_I]$. We will call this Jacobian, J_t ,

To compute R_t we will assume that the errors in $\Delta\phi_r$ and $\Delta\phi_I$ are independent. We define the following covariance matrix,

$$\Sigma_{\Delta} = \left[egin{array}{cc} k_r | \Delta \phi_r | & 0 \\ 0 & k_l | \Delta \phi_l | \end{array}
ight]$$

The larger the movement, the larger our uncertainty. Yet, this matrix is not R_t . It describes our uncertainty in **control space** not in **state space**.

The control vector $[\Delta\phi_r,\Delta\phi_I]^T$ passes through the function g. Therefore, the covariance matrix R_t is formed by propagating Σ_Δ through g. To evaluate this uncertainty we determine the Jacobian of g with respect to the control vector $[\Delta\phi_r \quad \Delta\phi_I]$. We will call this Jacobian, J_t ,

$$R_t = J_t \Sigma_{\Delta} J_t^T$$

$$J_t = \left[\frac{\partial g}{\partial \Delta \phi_r} \frac{\partial g}{\partial \Delta \phi_I} \right]$$

$$R_t = J_t \Sigma_{\Delta} J_t^T$$

$$J_{t} = \left[\frac{\partial g}{\partial \Delta \phi_{r}} \frac{\partial g}{\partial \Delta \phi_{I}}\right]$$

$$= \frac{r}{2} \left[\frac{\cos(\theta + \Delta \theta) - f\sin(\theta + \Delta \theta)}{\cos(\theta + \Delta \theta) + f\sin(\theta + \Delta \theta)}\right]$$

$$R_t = J_t \Sigma_{\Delta} J_t^T$$

$$J_{t} = \left[\frac{\partial g}{\partial \Delta \phi_{r}} \frac{\partial g}{\partial \Delta \phi_{I}}\right]$$

$$= \frac{r}{2} \begin{bmatrix} \cos(\theta + \Delta \theta) - f \sin(\theta + \Delta \theta) & \cos(\theta + \Delta \theta) + f \sin(\theta + \Delta \theta) \\ \sin(\theta + \Delta \theta) + f \cos(\theta + \Delta \theta) & \sin(\theta + \Delta \theta) - f \cos(\theta + \Delta \theta) \end{bmatrix}$$

$$R_t = J_t \Sigma_{\Delta} J_t^T$$

$$J_{t} = \left[\frac{\partial g}{\partial \Delta \phi_{r}} \frac{\partial g}{\partial \Delta \phi_{I}}\right]$$

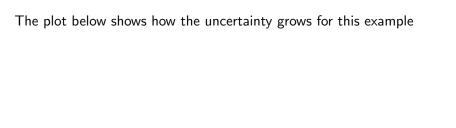
$$= \frac{r}{2} \begin{bmatrix} \cos(\theta + \Delta \theta) - f \sin(\theta + \Delta \theta) & \cos(\theta + \Delta \theta) + f \sin(\theta + \Delta \theta) \\ \sin(\theta + \Delta \theta) + f \cos(\theta + \Delta \theta) & \sin(\theta + \Delta \theta) - f \cos(\theta + \Delta \theta) \end{bmatrix}$$

$$R_t = J_t \Sigma_{\Delta} J_t^T$$

$$J_{t} = \begin{bmatrix} \frac{\partial g}{\partial \Delta \phi_{r}} & \frac{\partial g}{\partial \Delta \phi_{I}} \end{bmatrix}$$

$$= \frac{r}{2} \begin{bmatrix} \cos(\theta + \Delta \theta) - f \sin(\theta + \Delta \theta) & \cos(\theta + \Delta \theta) + f \sin(\theta + \Delta \theta) \\ \sin(\theta + \Delta \theta) + f \cos(\theta + \Delta \theta) & \sin(\theta + \Delta \theta) - f \cos(\theta + \Delta \theta) \end{bmatrix}$$

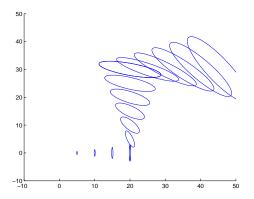
where $f = \frac{\Delta s}{l}$.



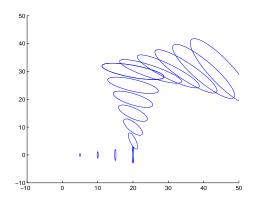
The plot below shows how the uncertainty grows for this example. The robot begins at $[0,0,0]^T$ and then moves to the right

The plot below shows how the uncertainty grows for this example. The robot begins at $[0,0,0]^T$ and then moves to the right. It then turns by 90° ; continues straight; turns by -90° ; then continues straight again.

The plot below shows how the uncertainty grows for this example. The robot begins at $[0,0,0]^T$ and then moves to the right. It then turns by 90° ; continues straight; turns by -90° ; then continues straight again.



The plot below shows how the uncertainty grows for this example. The robot begins at $[0,0,0]^T$ and then moves to the right. It then turns by 90° ; continues straight; turns by -90° ; then continues straight again.



The ellipses shown above are 50% confidence ellipses.

We now extend the previous example by incorporating sensors

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

$$z_t = f(z_t^{raw}) = \{f_t^1, f_t^2, \ldots\}$$

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

$$z_{t} = f(z_{t}^{raw}) = \left\{ f_{t}^{1}, f_{t}^{2}, \dots \right\}$$
$$= \left\{ \begin{bmatrix} r_{t}^{1} \\ \phi_{t}^{1} \end{bmatrix}, \begin{bmatrix} r_{t}^{2} \\ \phi_{t}^{2} \end{bmatrix} \dots \right\}$$

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

$$z_{t} = f(z_{t}^{raw}) = \left\{ f_{t}^{1}, f_{t}^{2}, \dots \right\}$$
$$= \left\{ \begin{bmatrix} r_{t}^{1} \\ \phi_{t}^{1} \end{bmatrix}, \begin{bmatrix} r_{t}^{2} \\ \phi_{t}^{2} \end{bmatrix} \dots \right\}$$

where r_t^k and ϕ_t^k are the range and bearing of the k^{th} feature.

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

$$z_{t} = f(z_{t}^{raw}) = \left\{ f_{t}^{1}, f_{t}^{2}, \dots \right\}$$
$$= \left\{ \begin{bmatrix} r_{t}^{1} \\ \phi_{t}^{1} \end{bmatrix}, \begin{bmatrix} r_{t}^{2} \\ \phi_{t}^{2} \end{bmatrix} \dots \right\}$$

where r_t^k and ϕ_t^k are the range and bearing of the k^{th} feature.

We assume that these features are independent,

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

$$z_{t} = f(z_{t}^{raw}) = \left\{ f_{t}^{1}, f_{t}^{2}, \dots \right\}$$
$$= \left\{ \begin{bmatrix} r_{t}^{1} \\ \phi_{t}^{1} \end{bmatrix}, \begin{bmatrix} r_{t}^{2} \\ \phi_{t}^{2} \end{bmatrix} \dots \right\}$$

where r_t^k and ϕ_t^k are the range and bearing of the k^{th} feature.

We assume that these features are independent,

$$p(z_t|x_t,m) = \prod_i p(r_t^i,\phi_t^i|x_t,m)$$

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

$$z_{t} = f(z_{t}^{raw}) = \left\{ f_{t}^{1}, f_{t}^{2}, \dots \right\}$$
$$= \left\{ \begin{bmatrix} r_{t}^{1} \\ \phi_{t}^{1} \end{bmatrix}, \begin{bmatrix} r_{t}^{2} \\ \phi_{t}^{2} \end{bmatrix} \dots \right\}$$

where r_t^k and ϕ_t^k are the range and bearing of the k^{th} feature.

We assume that these features are independent,

$$p(z_t|x_t,m) = \prod_i p(r_t^i,\phi_t^i|x_t,m)$$

Therefore we can break the measurement update step into a sequence of steps

We now extend the previous example by incorporating sensors. We assume that the sensor observation z_t is processed to yield a set of point features,

$$z_{t} = f(z_{t}^{raw}) = \left\{ f_{t}^{1}, f_{t}^{2}, \dots \right\}$$
$$= \left\{ \begin{bmatrix} r_{t}^{1} \\ \phi_{t}^{1} \end{bmatrix}, \begin{bmatrix} r_{t}^{2} \\ \phi_{t}^{2} \end{bmatrix} \dots \right\}$$

where r_t^k and ϕ_t^k are the range and bearing of the k^{th} feature.

We assume that these features are independent,

$$p(z_t|x_t,m) = \prod_i p(r_t^i,\phi_t^i|x_t,m)$$

Therefore we can break the measurement update step into a sequence of steps. In each step we update the belief for one feature.

$$m = \{m_1, m_2 \ldots\}$$

$$m = \{m_1, m_2 \ldots\}$$

Assumption: We assume that all of the observed features can be correctly corresponded with features in the map.

$$m=\{m_1,m_2\ldots\}$$

Assumption: We assume that all of the observed features can be correctly corresponded with features in the map.

The following function defines the measurement model

$$m=\{m_1,m_2\ldots\}$$

Assumption: We assume that all of the observed features can be correctly corresponded with features in the map.

The following function defines the **measurement model**. It is formulated such that the i^{th} feature observed at time t corresponds to the j^{th} feature in the map (not all map features will be perceived at each time step)

$$m=\{m_1,m_2\ldots\}$$

Assumption: We assume that all of the observed features can be correctly corresponded with features in the map.

The following function defines the **measurement model**. It is formulated such that the i^{th} feature observed at time t corresponds to the j^{th} feature in the map (not all map features will be perceived at each time step).

$$z_t^i = \left[\begin{array}{c} r_t^i \\ \phi_t^i \end{array} \right] = \left[\begin{array}{c} \sqrt{(m_{j,x} - x)^2 + (m_{j,y} - y)^2} \\ \text{atan2}(m_{j,y} - y, m_{j,x} - x) - \theta \end{array} \right] + \left[\begin{array}{c} \epsilon_r \\ \epsilon_\phi \end{array} \right]$$

$$m=\{m_1,m_2\ldots\}$$

Assumption: We assume that all of the observed features can be correctly corresponded with features in the map.

The following function defines the **measurement model**. It is formulated such that the i^{th} feature observed at time t corresponds to the j^{th} feature in the map (not all map features will be perceived at each time step).

$$z_{t}^{i} = \begin{bmatrix} r_{t}^{i} \\ \phi_{t}^{i} \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - x)^{2} + (m_{j,y} - y)^{2}} \\ atan2(m_{j,y} - y, m_{j,x} - x) - \theta \end{bmatrix} + \begin{bmatrix} \epsilon_{r} \\ \epsilon_{\phi} \end{bmatrix}$$
$$= h(x_{t})$$

$$m=\{m_1,m_2\ldots\}$$

Assumption: We assume that all of the observed features can be correctly corresponded with features in the map.

The following function defines the **measurement model**. It is formulated such that the i^{th} feature observed at time t corresponds to the j^{th} feature in the map (not all map features will be perceived at each time step).

$$z_{t}^{i} = \begin{bmatrix} r_{t}^{i} \\ \phi_{t}^{i} \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - x)^{2} + (m_{j,y} - y)^{2}} \\ atan2(m_{j,y} - y, m_{j,x} - x) - \theta \end{bmatrix} + \begin{bmatrix} \epsilon_{r} \\ \epsilon_{\phi} \end{bmatrix}$$
$$= h(x_{t})$$

where the ϵ terms represent zero-mean Gaussian error variables with standard deviations σ_r and σ_ϕ .

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6.
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6.
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

We incorporate point features by replacing these steps with a loop over observed features

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6.
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6.
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

$$\hat{z}_{t}^{i} = \begin{bmatrix} \sqrt{(m_{j,x} - \bar{\mu}_{t,x})^{2} + (m_{j,y} - \bar{\mu}_{t,y})^{2}} \\ atan2(m_{j,y} - \bar{\mu}_{t,y}, m_{j,x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta} \end{bmatrix}$$

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6.
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

$$\hat{z}_{t}^{i} = \begin{bmatrix}
\sqrt{(m_{j,x} - \bar{\mu}_{t,x})^{2} + (m_{j,y} - \bar{\mu}_{t,y})^{2}} \\
atan2(m_{j,y} - \bar{\mu}_{t,y}, m_{j,x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta}
\end{bmatrix} \\
= h(\bar{\mu}_{t})$$

4.
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5.
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6.
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

$$\hat{z}_{t}^{i} = \begin{bmatrix}
\sqrt{(m_{j,x} - \bar{\mu}_{t,x})^{2} + (m_{j,y} - \bar{\mu}_{t,y})^{2}} \\
atan2(m_{j,y} - \bar{\mu}_{t,y}, m_{j,x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta}
\end{bmatrix} \\
= h(\bar{\mu}_{t})$$

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

j =The map index of feature i

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

j =The map index of feature i

$$H_t^i = \left[egin{array}{ccc} -rac{m_{j,x} - ar{\mu}_{t,x}}{\sqrt{q}} & -rac{m_{j,y} - ar{\mu}_{t,y}}{\sqrt{q}} & 0 \ rac{m_{j,y} - ar{\mu}_{t,y}}{q} & -rac{m_{j,x} - ar{\mu}_{t,x}}{q} & -1 \end{array}
ight]$$

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

j =The map index of feature i

$$H_t^i = \begin{bmatrix} -rac{m_{j,x} - ar{\mu}_{t,x}}{\sqrt{q}} & -rac{m_{j,y} - ar{\mu}_{t,y}}{\sqrt{q}} & 0 \\ rac{m_{j,y} - ar{\mu}_{t,y}}{q} & -rac{m_{j,x} - ar{\mu}_{t,x}}{q} & -1 \end{bmatrix}$$
 where $q = (x - m_{i,x})^2 + (y - m_{i,y})^2$

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

j =The map index of feature i

$$H_{t}^{i} = \begin{bmatrix} -\frac{m_{j,x} - \bar{\mu}_{t,x}}{\sqrt{q}} & -\frac{m_{j,y} - \bar{\mu}_{t,y}}{\sqrt{q}} & 0\\ \frac{m_{j,y} - \bar{\mu}_{t,y}}{q} & -\frac{m_{j,x} - \bar{\mu}_{t,x}}{q} & -1 \end{bmatrix}$$
where $q = (x - m_{i,x})^{2} + (y - m_{i,x})^{2}$

where $q = (x - m_{i,x})^2 + (y - m_{i,y})^2$

where
$$q = (x - m_{j,x})^T + (y - m_{j,y})^T$$

 $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

i =The map index of feature i

$$H_{t}^{i} = \begin{bmatrix} -\frac{m_{j,x} - \bar{\mu}_{t,x}}{\sqrt{q}} & -\frac{m_{j,y} - \bar{\mu}_{t,y}}{\sqrt{q}} & 0\\ \frac{m_{j,y} - \bar{\mu}_{t,y}}{q} & -\frac{m_{j,x} - \bar{\mu}_{t,x}}{q} & -1 \end{bmatrix}$$
where $q = (x - m_{i,x})^{2} + (y - m_{i,y})^{2}$

where
$$q = (x - m_{j,x})^2 + (y - m_{j,y})^2$$

$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

$$\bar{\mu}_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

i =The map index of feature i

$$H_t^i = \begin{bmatrix} -rac{m_{j,x} - ar{\mu}_{t,x}}{\sqrt{q}} & -rac{m_{j,y} - ar{\mu}_{t,y}}{\sqrt{q}} & 0 \\ rac{m_{j,y} - ar{\mu}_{t,y}}{q} & -rac{m_{j,x} - ar{\mu}_{t,x}}{q} & -1 \end{bmatrix}$$
where $q = (x - m_{i,x})^2 + (y - m_{i,y})^2$

where $q = (x - m_{i,x})^2 + (y - m_{i,y})^2$

$$K_t = ar{\Sigma}_t H_t^T (H_t ar{\Sigma}_t H_t^T + Q_t)^{-1}$$

 $ar{\mu}_t = ar{\mu}_t + K_t (z_t - h(ar{\mu}_t))$

$$ar{\Sigma}_t = (I - K_t H_t) ar{\Sigma}_t$$

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

$$j=$$
 The map index of feature i
$$H_t^i=\left[\begin{array}{ccc} -\frac{m_{j,x}-ar{\mu}_{t,x}}{\sqrt{q}} & -\frac{m_{j,y}-ar{\mu}_{t,y}}{\sqrt{q}} & 0 \\ \frac{m_{j,y}-ar{\mu}_{t,y}}{q} & -\frac{m_{j,x}-ar{\mu}_{t,x}}{q} & -1 \end{array}\right]$$
 where $q=(x-m_{j,x})^2+(y-m_{j,y})^2$

$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$
$$\bar{\mu}_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$$
$$\bar{\Sigma}_t = (I - K_t H_t) \bar{\Sigma}_t$$

end for

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

$$j =$$
The map index of feature i

$$\begin{split} H_t^i &= \begin{bmatrix} -\frac{m_{j,x} - \bar{\mu}_{t,x}}{\sqrt{q}} & -\frac{m_{j,y} - \bar{\mu}_{t,y}}{\sqrt{q}} & 0\\ \frac{m_{j,y} - \bar{\mu}_{t,y}}{q} & -\frac{m_{j,x} - \bar{\mu}_{t,x}}{q} & -1 \end{bmatrix}\\ \text{where } q &= (x - m_{j,x})^2 + (y - m_{j,y})^2\\ K_t &= \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}\\ \bar{\mu}_t &= \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))\\ \bar{\Sigma}_t &= (I - K_t H_t) \bar{\Sigma}_t \end{split}$$

end for

$$\mu_t = \bar{\mu}_t$$

for all observed features $z_t^i = (r_t^i, \phi_t^i)$

j = The map index of feature i

$$H_t^i = \begin{bmatrix} -\frac{m_{j,x} - \bar{\mu}_{t,x}}{\sqrt{q}} & -\frac{m_{j,y} - \bar{\mu}_{t,y}}{\sqrt{q}} & 0\\ \frac{m_{j,y} - \bar{\mu}_{t,y}}{q} & -\frac{m_{j,x} - \bar{\mu}_{t,x}}{q} & -1 \end{bmatrix}$$
where $q = (x_t - m_t)^2 + (x_t - m_t)^2$

where
$$q = (x - m_{j,x})^2 + (y - m_{j,y})^2$$

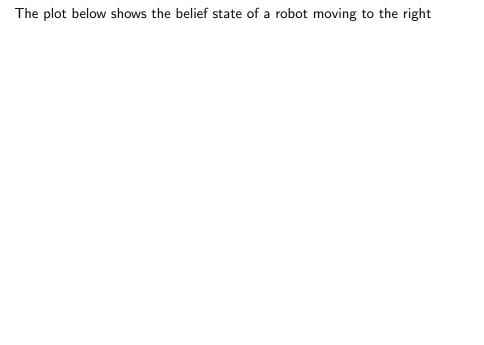
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$
$$\bar{\mu}_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$$

$$\bar{\Sigma}_t = (I - K_t H_t) \bar{\Sigma}_t$$

end for

$$\mu_t = \bar{\mu}$$

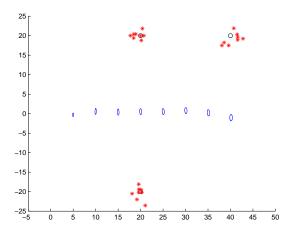
$$\Sigma_t = \bar{\Sigma}_t$$



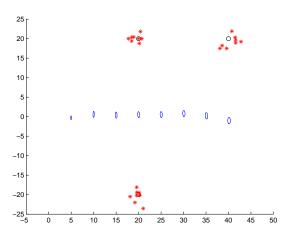
The plot below shows the belief state of a robot moving to the right. The three black circles are landmarks $\,$

The plot below shows the belief state of a robot moving to the right. The three black circles are landmarks. The red stars surrounding each landmark are the perceived positions of the landmark over time

The plot below shows the belief state of a robot moving to the right. The three black circles are landmarks. The red stars surrounding each landmark are the perceived positions of the landmark over time.



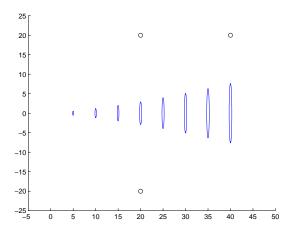
The plot below shows the belief state of a robot moving to the right. The three black circles are landmarks. The red stars surrounding each landmark are the perceived positions of the landmark over time.



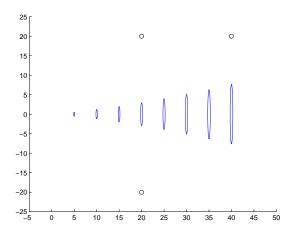
The uncertainty ellipses remain bounded in size.

Without incorporating the measurement update we would have the following situation,

Without incorporating the measurement update we would have the following situation,



Without incorporating the measurement update we would have the following situation,



Here the uncertainty ellipses continue to grow over time.