Localization: Part 5
Covariance Matrices and the Multivariate Normal Distribution

Computer Science 4766/6912

Department of Computer Science
Memorial University of Newfoundland

July 26, 2017
To discuss the Kalman filter, we first need to discuss the **multivariate normal distribution**...
To discuss the Kalman filter, we first need to discuss the **multivariate normal distribution**...

To discuss the multivariate normal distribution, we first need to discuss **covariance matrices**...
To discuss the Kalman filter, we first need to discuss the **multivariate normal distribution**...

To discuss the multivariate normal distribution, we first need to discuss **covariance matrices**...

To discuss covariance matrices, we first need to *review covariance*...
The effect of one random variable on another is expressed by the **covariance** between the two variables.
Covariance

The effect of one random variable on another is expressed by the **covariance** between the two variables; This is defined as,

\[
\sigma_{ij} = \text{Cov}(X_i, X_j) = \mathbb{E}((X_i - \mu_{X_i})(X_j - \mu_{X_j})) = \mathbb{E}(X_i X_j) - \mu_{X_i} \mu_{X_j}
\]

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of \(X_i\) are associated with large values of \(X_j\)
- Negative covariance implies that large values of \(X_i\) are associated with small values of \(X_j\), and vice versa

Related to covariance, is the **correlation coefficient**, which indicates a linear relationship between two random variables,

\[
\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}
\]
Covariance

The effect of one random variable on another is expressed by the **covariance** between the two variables; This is defined as,

\[\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{x_i})(X_j - \mu_{x_j})) \]

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of \(X_i\) are associated with large values of \(X_j\)
- Negative covariance implies that large values of \(X_i\) are associated with small values of \(X_j\), and vice versa

Related to covariance, is the **correlation coefficient**, which indicates a linear relationship between two random variables,

\[\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j} \]
Covariance

The effect of one random variable on another is expressed by the **covariance** between the two variables; This is defined as,

\[
\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{X_i})(X_j - \mu_{X_j})) \\
= E(X_iX_j) - \mu_{X_i}\mu_{X_j}
\]
The effect of one random variable on another is expressed by the covariance between the two variables; This is defined as,

$$\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{x_i})(X_j - \mu_{x_j}))$$

$$= E(X_iX_j) - \mu_{x_i}\mu_{x_j}$$

Unlike variance, covariance can be positive or negative:
Covariance

The effect of one random variable on another is expressed by the **covariance** between the two variables; This is defined as,

\[
\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{x_i})(X_j - \mu_{x_j})) \\
= E(X_iX_j) - \mu_{x_i}\mu_{x_j}
\]

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of X_i are associated with large values of X_j
Covariance

The effect of one random variable on another is expressed by the **covariance** between the two variables; This is defined as,

\[
\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{X_i})(X_j - \mu_{X_j})) \\
= E(X_iX_j) - \mu_{X_i}\mu_{X_j}
\]

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of \(X_i\) are associated with large values of \(X_j\)
- Negative covariance implies that large values of \(X_i\) are associated with small values of \(X_j\), and vice versa
Covariance

The effect of one random variable on another is expressed by the covariance between the two variables; This is defined as,

$$\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{X_i})(X_j - \mu_{X_j}))$$

$$= E(X_iX_j) - \mu_{X_i}\mu_{X_j}$$

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of X_i are associated with large values of X_j
- Negative covariance implies that large values of X_i are associated with small values of X_j, and vice versa
Covariance

The effect of one random variable on another is expressed by the covariance between the two variables; This is defined as,

\[\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{X_i})(X_j - \mu_{X_j})) = E(X_iX_j) - \mu_{X_i}\mu_{X_j} \]

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of \(X_i \) are associated with large values of \(X_j \)
- Negative covariance implies that large values of \(X_i \) are associated with small values of \(X_j \), and vice versa

Related to covariance, is the correlation coefficient, which indicates a linear relationship between two random variables,
The effect of one random variable on another is expressed by the **covariance** between the two variables; This is defined as,

\[
\sigma_{ij} = Cov(X_i, X_j) = E((X_i - \mu_{X_i})(X_j - \mu_{X_j})) = E(X_iX_j) - \mu_{X_i}\mu_{X_j}
\]

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of X_i are associated with large values of X_j
- Negative covariance implies that large values of X_i are associated with small values of X_j, and vice versa

Related to covariance, is the **correlation coefficient**, which indicates a linear relationship between two random variables,

\[
\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i\sigma_j}
\]
Covariance

The effect of one random variable on another is expressed by the covariance between the two variables; This is defined as,

\[\sigma_{ij} = \text{Cov}(X_i, X_j) = E((X_i - \mu_{x_i})(X_j - \mu_{x_j})) \]

\[= E(X_iX_j) - \mu_{x_i}\mu_{x_j} \]

Unlike variance, covariance can be positive or negative:

- Positive covariance implies that large values of \(X_i \) are associated with large values of \(X_j \)
- Negative covariance implies that large values of \(X_i \) are associated with small values of \(X_j \), and vice versa

Related to covariance, is the correlation coefficient, which indicates a linear relationship between two random variables,

\[\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j} \]
Variance can be considered a special case of covariance,
Variance can be considered a special case of covariance,

\[Var(X) = Cov(X, X) \]
Variance can be considered a special case of covariance,

\[\text{Var}(X) = \text{Cov}(X, X) \]

If two random variables are independent,
Variance can be considered a special case of covariance,

$$\text{Var}(X) = \text{Cov}(X, X)$$

If two random variables are independent,

$$\text{Cov}(X_1, X_2) = 0$$
Variance can be considered a special case of covariance,

\[\text{Var}(X) = \text{Cov}(X, X) \]

If two random variables are independent,

\[\text{Cov}(X_1, X_2) = 0 \]

Enough about covariance for now... What about covariance matrices? They come up more naturally if we look at functions of random variables...
If a single random variable passes through a linear function, we can determine the expected value and variance of the output.
If a single random variable passes through a linear function, we can determine the expected value and variance of the output.
If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let \(y = f(x) = a \cdot x + b \)
Functions of Random Variables

If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let \(y = f(x) = a \cdot x + b \)

\[
\mu_y = E[a \cdot X + b] = a \cdot \mu_x + b
\]
If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let $y = f(x) = a \cdot x + b$

$$\mu_y = \mathbb{E}[a \cdot X + b] = a \cdot \mu_x + b$$

$$\sigma^2_y = \mathbb{E}[(a \cdot X + b - \mu_y)^2]$$
Functions of Random Variables

- If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let \(y = f(x) = a \cdot x + b \)

\[
\begin{align*}
\mu_y &= E[a \cdot X + b] = a \cdot \mu_x + b \\
\sigma_y^2 &= E[(a \cdot X + b - \mu_y)^2] \\
&= a^2 \cdot \sigma_x^2
\end{align*}
\]
If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let \(y = f(x) = a \cdot x + b \)

\[
\mu_y = E[a \cdot X + b] = a \cdot \mu_x + b
\]

\[
\sigma^2_y = E[(a \cdot X + b - \mu_y)^2]
= a^2 \cdot \sigma^2_x
\]

What if the function involves some linear combination of random variables?
Functions of Random Variables

- If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let \(y = f(x) = a \cdot x + b \)

\[
\begin{align*}
\mu_y &= E[a \cdot X + b] = a \cdot \mu_x + b \\
\sigma^2_y &= E[(a \cdot X + b - \mu_y)^2] \\
&= a^2 \cdot \sigma^2_x
\end{align*}
\]

- What if the function involves some linear combination of random variables?
Functions of Random Variables

- If a single random variable passes through a linear function, we can determine the expected value and variance of the output.
 Let \(y = f(x) = a \cdot x + b \)
 \[
 \mu_y = E[a \cdot X + b] = a \cdot \mu_x + b
 \]
 \[
 \sigma^2_y = E[(a \cdot X + b - \mu_y)^2]
 \]
 \[
 = a^2 \cdot \sigma^x
 \]

- What if the function involves some linear combination of random variables?
 e.g. Let \(y = f(x_1, x_2) = a \cdot x_1 + b \cdot x_2 \)
If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let \(y = f(x) = a \cdot x + b \)

\[
\begin{align*}
\mu_y &= E[a \cdot X + b] = a \cdot \mu_x + b \\
\sigma_y^2 &= E[(a \cdot X + b - \mu_y)^2] \\
&= a^2 \cdot \sigma_x^2
\end{align*}
\]

What if the function involves some linear combination of random variables?

E.g. Let \(y = f(x_1, x_2) = a \cdot x_1 + b \cdot x_2 \)

\[
\mu_y = a \cdot \mu_{x_1} + b \cdot \mu_{x_2}
\]
If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

Let \(y = f(x) = ax + b \)

\[
\begin{align*}
\mu_y &= E[a \cdot X + b] = a \cdot \mu_x + b \\
\sigma_y^2 &= E[(a \cdot X + b - \mu_y)^2] \\
&= a^2 \cdot \sigma_x^2
\end{align*}
\]

What if the function involves some linear combination of random variables?

E.g. Let \(y = f(x_1, x_2) = a \cdot x_1 + b \cdot x_2 \)

\[
\begin{align*}
\mu_y &= a \cdot \mu_{x_1} + b \cdot \mu_{x_2} \\
\sigma_y^2 &= a^2 \cdot \sigma_{x_1}^2 + b^2 \cdot \sigma_{x_2}^2 + 2ab \cdot \sigma_{x_1 x_2}
\end{align*}
\]
Functions of Random Variables

- If a single random variable passes through a linear function, we can determine the expected value and variance of the output.

 Let \(y = f(x) = a \cdot x + b \)

 \[
 \begin{align*}
 \mu_y &= E[a \cdot X + b] = a \cdot \mu_x + b \\
 \sigma_y^2 &= E[(a \cdot X + b - \mu_y)^2] \\
 &= a^2 \cdot \sigma_x^2
 \end{align*}
 \]

- What if the function involves some linear combination of random variables?
 e.g. Let \(y = f(x_1, x_2) = a \cdot x_1 + b \cdot x_2 \)

 \[
 \begin{align*}
 \mu_y &= a \cdot \mu_{x_1} + b \cdot \mu_{x_2} \\
 \sigma_y^2 &= a^2 \cdot \sigma_{x_1}^2 + b^2 \cdot \sigma_{x_2}^2 + 2ab \cdot \sigma_{x_1 x_2}
 \end{align*}
 \]

- What if we have multiple outputs? Things get complicated and it becomes helpful to introduce the...
Assume we have two linear functions, producing two outputs from two inputs,
Assume we have two linear functions, producing two outputs from two inputs,

\[y_1 = ax_1 + bx_2 \]
\[y_2 = cx_1 + dx_2 \]
Covariance Matrix

Assume we have two linear functions, producing two outputs from two inputs,

\[y_1 = ax_1 + bx_2 \]
\[y_2 = cx_1 + dx_2 \]

We can introduce the vectors \(\mathbf{y} = [y_1, y_2]^T \) and \(\mathbf{x} = [x_1, x_2]^T \)
Assume we have two linear functions, producing two outputs from two inputs,

\[y_1 = ax_1 + bx_2 \]
\[y_2 = cx_1 + dx_2 \]

We can introduce the vectors \(\mathbf{y} = [y_1, y_2]^T \) and \(\mathbf{x} = [x_1, x_2]^T \); The system can now be represented in matrix notation,
Covariance Matrix

Assume we have two linear functions, producing two outputs from two inputs,

\[
\begin{align*}
 y_1 &= ax_1 + bx_2 \\
 y_2 &= cx_1 + dx_2
\end{align*}
\]

We can introduce the vectors \(\mathbf{y} = [y_1, y_2]^T \) and \(\mathbf{x} = [x_1, x_2]^T \); The system can now be represented in matrix notation,

\[
\mathbf{y} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{x}
\]
Assume we have two linear functions, producing two outputs from two inputs,

\[y_1 = ax_1 + bx_2 \]
\[y_2 = cx_1 + dx_2 \]

We can introduce the vectors \(y = [y_1, y_2]^T \) and \(x = [x_1, x_2]^T \); The system can now be represented in matrix notation,

\[y = \begin{bmatrix} a & b \\ c & d \end{bmatrix} x = Ax \]
Assume we have two linear functions, producing two outputs from two inputs,

\[
\begin{align*}
y_1 &= ax_1 + bx_2 \\
y_2 &= cx_1 + dx_2
\end{align*}
\]

We can introduce the vectors \(\mathbf{y} = [y_1, y_2]^T \) and \(\mathbf{x} = [x_1, x_2]^T \); The system can now be represented in matrix notation,

\[
\mathbf{y} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{x} = A \mathbf{x}
\]

It can easily be shown that,
Covariance Matrix

Assume we have two linear functions, producing two outputs from two inputs,

\[y_1 = ax_1 + bx_2 \]
\[y_2 = cx_1 + dx_2 \]

We can introduce the vectors \(\mathbf{y} = [y_1, y_2]^T \) and \(\mathbf{x} = [x_1, x_2]^T \); The system can now be represented in matrix notation,

\[
\mathbf{y} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{A} \mathbf{x}
\]

It can easily be shown that,

\[\mu_y = A\mu_x \]
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by $\sigma_{x_1}^2$, $\sigma_{x_2}^2$, and $\sigma_{x_1x_2}$.
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by $\sigma_{x_1}^2$, $\sigma_{x_2}^2$, and $\sigma_{x_1x_2}$. First we organize these values into a **covariance matrix**,

\[
\Sigma_x = \begin{bmatrix}
\sigma_{x_1}^2 & \sigma_{x_1x_2} \\
\sigma_{x_1x_2} & \sigma_{x_2}^2
\end{bmatrix}
\]

(Note that the symbol Σ will be used to represent covariance matrices. It should be clear from the context whether a covariance matrix or a summation operator is intended.)

We now want to know Σ_y for our system; It turns out that this is given by,

\[
\Sigma_y = A \Sigma_x A^T
\]

which is valid whenever y is a linear function of x (i.e. $y = Ax$).
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by $\sigma_{x_1}^2$, $\sigma_{x_2}^2$, and $\sigma_{x_1 x_2}$. First we organize these values into a covariance matrix,

$$\Sigma_x = \begin{bmatrix} \sigma_{x_1}^2 & \sigma_{x_1 x_2} \\ \sigma_{x_1 x_2} & \sigma_{x_2}^2 \end{bmatrix}$$
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by $\sigma_{x_1}^2$, $\sigma_{x_2}^2$, and $\sigma_{x_1x_2}$. First we organize these values into a covariance matrix,

$$
\Sigma_x = \begin{bmatrix}
\sigma_{x_1}^2 & \sigma_{x_1x_2} \\
\sigma_{x_1x_2} & \sigma_{x_2}^2
\end{bmatrix}
$$

(Note that the symbol Σ will be used to represent covariance matrices. It should be clear from the context whether a covariance matrix or a summation operator is intended.)
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by \(\sigma_{x_1}^2 \), \(\sigma_{x_2}^2 \), and \(\sigma_{x_1 x_2} \). First we organize these values into a covariance matrix,

\[
\Sigma_x = \begin{bmatrix}
\sigma_{x_1}^2 & \sigma_{x_1 x_2} \\
\sigma_{x_1 x_2} & \sigma_{x_2}^2
\end{bmatrix}
\]

(Note that the symbol \(\Sigma \) will be used to represent covariance matrices. It should be clear from the context whether a covariance matrix or a summation operator is intended.)

We now want to know \(\Sigma_y \) for our system
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by $\sigma^2_{x_1}$, $\sigma^2_{x_2}$, and $\sigma_{x_1 x_2}$. First we organize these values into a **covariance matrix**,

$$
\Sigma_x = \begin{bmatrix}
\sigma^2_{x_1} & \sigma_{x_1 x_2} \\
\sigma_{x_1 x_2} & \sigma^2_{x_2}
\end{bmatrix}
$$

(Note that the symbol Σ will be used to represent covariance matrices. It should be clear from the context whether a covariance matrix or a summation operator is intended.)

We now want to know Σ_y for our system; It turns out that this is given by,
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by $\sigma_{x_1}^2$, $\sigma_{x_2}^2$, and $\sigma_{x_1x_2}$. First we organize these values into a **covariance matrix**,

$$
\Sigma_x = \begin{bmatrix}
\sigma_{x_1}^2 & \sigma_{x_1x_2} \\
\sigma_{x_1x_2} & \sigma_{x_2}^2
\end{bmatrix}
$$

(Note that the symbol Σ will be used to represent covariance matrices. It should be clear from the context whether a covariance matrix or a summation operator is intended.)

We now want to know Σ_y for our system; It turns out that this is given by,

$$
\Sigma_y = A\Sigma_x A^T
$$
To talk about the uncertainty of the output, we must discuss uncertainty in the input—which is given by \(\sigma^2_{x_1}, \sigma^2_{x_2}, \) and \(\sigma_{x_1x_2} \). First we organize these values into a **covariance matrix**,

\[
\Sigma_x = \begin{bmatrix}
\sigma^2_{x_1} & \sigma_{x_1x_2} \\
\sigma_{x_1x_2} & \sigma^2_{x_2}
\end{bmatrix}
\]

(Note that the symbol \(\Sigma \) will be used to represent covariance matrices. It should be clear from the context whether a covariance matrix or a summation operator is intended.)

We now want to know \(\Sigma_y \) for our system; It turns out that this is given by,

\[
\Sigma_y = A \Sigma_x A^T
\]

which is valid whenever \(y \) is a linear function of \(x \) (i.e. \(y = Ax \))
For a larger system, the covariance matrix looks like this

\[\Sigma = \begin{bmatrix}
\sigma^2_{x,1} & \sigma_{x,1},x_2 & \cdots & \sigma_{x,1},x_n \\
\sigma_{x,2},x_1 & \sigma^2_{x,2} & \cdots & \sigma_{x,2},x_n \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{x,n},x_1 & \sigma_{x,n},x_2 & \cdots & \sigma^2_{x,n}
\end{bmatrix} \]

The formal definition of a covariance matrix is equivalent to the definition of covariance extended to vectors,

\[\Sigma = \mathbb{E}\left[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T \right] \]

Covariance matrices have a number of special properties: square, symmetric, positive semidefinite.
For a larger system, the covariance matrix looks like this

\[\Sigma_x = \begin{bmatrix}
\sigma_{x_1}^2 & \sigma_{x_1,x_2} & \cdots & \sigma_{x_1,x_n} \\
\sigma_{x_2,x_1} & \sigma_{x_2}^2 & \cdots & \sigma_{x_2,x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{x_n,x_1} & \sigma_{x_n,x_2} & \cdots & \sigma_{x_n}^2
\end{bmatrix} \]
For a larger system, the covariance matrix looks like this

\[\Sigma = \begin{bmatrix}
 \sigma_{x_1}^2 & \sigma_{x_1,x_2} & \cdots & \sigma_{x_1,x_n} \\
 \sigma_{x_2,x_1} & \sigma_{x_2}^2 & \cdots & \sigma_{x_2,x_n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \sigma_{x_n,x_1} & \sigma_{x_n,x_2} & \cdots & \sigma_{x_n}^2
\end{bmatrix} \]

The formal definition of a covariance matrix is equivalent to the definition of covariance extended to vectors,
For a larger system, the covariance matrix looks like this

$$\Sigma_x = \begin{bmatrix}
\sigma_{x_1}^2 & \sigma_{x_1,x_2} & \cdots & \sigma_{x_1,x_n} \\
\sigma_{x_2,x_1} & \sigma_{x_2}^2 & \cdots & \sigma_{x_2,x_n} \\
& & \ddots & \\
\sigma_{x_n,x_1} & \sigma_{x_n,x_2} & \cdots & \sigma_{x_n}^2
\end{bmatrix}$$

The formal definition of a covariance matrix is equivalent to the definition of covariance extended to vectors,

$$\Sigma = E \left[(x - E[x])(x - E[x])^T \right]$$
For a larger system, the covariance matrix looks like this

$$\Sigma_x = \begin{bmatrix}
\sigma_{x_1}^2 & \sigma_{x_1,x_2} & \cdots & \sigma_{x_1,x_n} \\
\sigma_{x_2,x_1} & \sigma_{x_2}^2 & \cdots & \sigma_{x_2,x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{x_n,x_1} & \sigma_{x_n,x_2} & \cdots & \sigma_{x_n}^2
\end{bmatrix}$$

The formal definition of a covariance matrix is equivalent to the definition of covariance extended to vectors,

$$\Sigma = E \left[(x - E[x]) (x - E[x])^T \right]$$

Covariance matrices have a number of special properties: square, symmetric, positive semidefinite.
We are all now familiar with the definition of a 1-D Normal p.d.f.
The Multivariate Normal Distribution

- We are all now familiar with the definition of a 1-D Normal p.d.f.
We are all now familiar with the definition of a 1-D Normal p.d.f.

\[p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right\} \]
We are all now familiar with the definition of a 1-D Normal p.d.f.

\[p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right\} \]

If \(x \) is a \(n \)-dimensional vector then the multivariate Normal p.d.f. is
We are all now familiar with the definition of a 1-D Normal p.d.f.

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right\}$$

If \(x \) is a \(n \)-dimensional vector then the multivariate Normal p.d.f. is
The Multivariate Normal Distribution

- We are all now familiar with the definition of a 1-D Normal p.d.f.
 \[p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right\} \]

- If \(x \) is a \(n \)-dimensional vector then the multivariate Normal p.d.f. is
 \[p(x) = \det (2\pi\Sigma)^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]
The Multivariate Normal Distribution

- We are all now familiar with the definition of a 1-D Normal p.d.f.

\[p(x) = (2\pi \sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \left(\frac{(x - \mu)^2}{\sigma^2} \right) \right\} \]

- If \(x \) is a \(n \)-dimensional vector then the multivariate Normal p.d.f. is

\[p(x) = \det (2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

- The mean \(\mu \) is now a vector of size \(n \)
The Multivariate Normal Distribution

- We are all now familiar with the definition of a 1-D Normal p.d.f.

\[p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right\} \]

- If \(x \) is a \(n \)-dimensional vector then the multivariate Normal p.d.f. is

\[p(x) = \det (2\pi\Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

- The mean \(\mu \) is now a vector of size \(n \)
- The variance \(\sigma^2 \) is now the covariance matrix \(\Sigma \), which is a square matrix of size \(n \times n \)
The following is a 2-D normal distribution with \(\mu = [0, 0]^T \) and
\[
\Sigma = \begin{bmatrix}
0.9 & 0.4 \\
0.4 & 0.3
\end{bmatrix}
\]
The following is a 2-D normal distribution with $\mu = [0, 0]^T$ and

$$\Sigma = \begin{bmatrix} 0.9 & 0.4 \\ 0.4 & 0.3 \end{bmatrix}$$
Consider again the definition of the multivariate Normal,

\[p(x) = \det(2\pi \Sigma)^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]
Consider again the definition of the multivariate Normal,

\[p(x) = \text{det} \left(2\pi \Sigma \right)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

For some values of \(x \) we get the same probability

For some values of \(x \) we get the same probability
Consider again the definition of the multivariate Normal,

\[p(x) = \det (2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

For some values of \(x \) we get the same probability; in particular, when the expression \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant we get a curve of constant probability.
Consider again the definition of the multivariate Normal,

\[p(x) = \det(2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right\} \]

For some values of \(x \) we get the same probability; In particular, when the expression \((x - \mu)^T \Sigma^{-1}(x - \mu) \) is constant we get a curve of constant probability; What curve
Consider again the definition of the multivariate Normal,

\[p(x) = \det(2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

For some values of \(x \) we get the same probability; In particular, when the expression \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant we get a curve of constant probability; What curve? Define a constant \(c^2 \) as follows (shown in 2-D but works in higher dimensions as well),

\[
\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = c^2
\]

\[
\begin{pmatrix} a & b \\ b & d \end{pmatrix}
\]

\[
\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}^T = (x - \mu) \quad \text{and the matrix in the middle is } \Sigma^{-1}.
\]

This can be expanded to obtain,

\[
a x_1^2 + 2 b x_1 y_1 + d y_1^2 = c^2
\]

which is the equation of an ellipse.
Consider again the definition of the multivariate Normal,

\[p(x) = \det(2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

For some values of \(x \) we get the same probability; In particular, when the expression \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant we get a curve of constant probability; What curve? Define a constant \(c^2 \) as follows (shown in 2-D but works in higher dimensions as well),

\[
\begin{bmatrix} x_1, y_1 \end{bmatrix} \begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = c^2
\]

where \([x_1, y_1]^T = (x - \mu)\) and the matrix in the middle is \(\Sigma^{-1} \)
Consider again the definition of the multivariate Normal,

\[p(x) = \det (2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

For some values of \(x \) we get the same probability; In particular, when the expression \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant we get a curve of constant probability; What curve? Define a constant \(c^2 \) as follows (shown in 2-D but works in higher dimensions as well),

\[
\begin{bmatrix} x_1, y_1 \end{bmatrix} \begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = c^2
\]

where \([x_1, y_1]^T = (x - \mu)\) and the matrix in the middle is \(\Sigma^{-1} \). This can be expanded to obtain,
Consider again the definition of the multivariate Normal,

\[
p(x) = \det(2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
\]

For some values of \(x\) we get the same probability; In particular, when the expression \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant we get a curve of constant probability; What curve? Define a constant \(c^2\) as follows (shown in 2-D but works in higher dimensions as well),

\[
\begin{bmatrix} x_1, y_1 \end{bmatrix} \begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = c^2
\]

where \([x_1, y_1]^T = (x - \mu)\) and the matrix in the middle is \(\Sigma^{-1}\). This can be expanded to obtain,

\[
ax_1^2 + 2bx_1y_1 + dy_1^2 = c^2
\]
Consider again the definition of the multivariate Normal,

\[
p(x) = \det (2\pi \Sigma)^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
\]

For some values of \(x \) we get the same probability; In particular, when the expression \((x - \mu)^T \Sigma^{-1} (x - \mu)\) is constant we get a curve of constant probability; What curve? Define a constant \(c^2 \) as follows (shown in 2-D but works in higher dimensions as well),

\[
[x_1, y_1] \begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = c^2
\]

where \([x_1, y_1]^T = (x - \mu)\) and the matrix in the middle is \(\Sigma^{-1} \). This can be expanded to obtain,

\[
a x_1^2 + 2b x_1 y_1 + d y_1^2 = c^2
\]

which is the equation of an ellipse.
It can be shown that the probability of a value falling within the ellipse is $1 - \alpha$, where α comes from $\chi^2(\alpha) = c^2$ and $\chi^2(\alpha)$ is the upper (100α)th percentile of a χ^2 distribution.
It can be shown that the probability of a value falling within the ellipse is \(1 - \alpha\), where \(\alpha\) comes from \(\chi^2(\alpha) = c^2\) and \(\chi^2(\alpha)\) is the upper \((100\alpha)\)th percentile of a \(\chi^2\) distribution.

An ellipse with \(\alpha = 0.1\) is known as a 90\% confidence ellipse,
It can be shown that the probability of a value falling within the ellipse is \(1 - \alpha\), where \(\alpha\) comes from \(\chi^2(\alpha) = c^2\) and \(\chi^2(\alpha)\) is the upper \((100\alpha)\)th percentile of a \(\chi^2\) distribution.

An ellipse with \(\alpha = 0.1\) is known as a 90% confidence ellipse,
It can be shown that the probability of a value falling within the ellipse is $1 - \alpha$, where α comes from $\chi^2(\alpha) = c^2$ and $\chi^2(\alpha)$ is the upper (100α)th percentile of a χ^2 distribution.

An ellipse with $\alpha = 0.1$ is known as a 90% confidence ellipse,

The smaller ellipse is the 50% confidence ellipse, while the larger is the 90% confidence ellipse.