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To discuss the Kalman filter, we first need to discuss the multivariate
normal distribution...

To discuss the multivariate normal distribution, we first need to discuss
covariance matrices...

To discuss covariance matrices, we first need to review covariance...
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Covariance

The effect of one random variable on another is expressed by the
covariance between the two variables

; This is defined as,

σij = Cov(Xi ,Xj) = E ((Xi − µxi )(Xj − µxj ))

= E (XiXj) − µXi
µXj

Unlike variance, covariance can be positive or negative:

Positive covariance implies that large values of Xi are associated with
large values of Xj

Negative covariance implies that large values of Xi are associated with
small values of Xj , and vice versa

Related to covariance, is the correlation coefficient, which indicates a
linear relationship between two random variables,

ρij =
σij
σiσj
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Covariance: Other Properties

Variance can be considered a special case of covariance,

Var(X ) = Cov(X ,X )

If two random variables are independent,

Cov(X1,X2) = 0

Enough about covariance for now... What about covariance matrices?
They come up more naturally if we look at functions of random variables...

COMP 6912 (MUN) Localization July 11, 2018 4 / 12



Covariance: Other Properties

Variance can be considered a special case of covariance,

Var(X ) = Cov(X ,X )

If two random variables are independent,

Cov(X1,X2) = 0

Enough about covariance for now... What about covariance matrices?
They come up more naturally if we look at functions of random variables...

COMP 6912 (MUN) Localization July 11, 2018 4 / 12



Covariance: Other Properties

Variance can be considered a special case of covariance,

Var(X ) = Cov(X ,X )

If two random variables are independent,

Cov(X1,X2) = 0

Enough about covariance for now... What about covariance matrices?
They come up more naturally if we look at functions of random variables...

COMP 6912 (MUN) Localization July 11, 2018 4 / 12



Covariance: Other Properties

Variance can be considered a special case of covariance,

Var(X ) = Cov(X ,X )

If two random variables are independent,

Cov(X1,X2) = 0

Enough about covariance for now... What about covariance matrices?
They come up more naturally if we look at functions of random variables...

COMP 6912 (MUN) Localization July 11, 2018 4 / 12



Covariance: Other Properties

Variance can be considered a special case of covariance,

Var(X ) = Cov(X ,X )

If two random variables are independent,

Cov(X1,X2) = 0

Enough about covariance for now... What about covariance matrices?
They come up more naturally if we look at functions of random variables...

COMP 6912 (MUN) Localization July 11, 2018 4 / 12



Functions of Random Variables

If a single random variable passes through a linear function, we can
determine the expected value and variance of the output

Let y = f (x) = a · x + b

µy = E [a · X + b] = a · µx + b

σ2y = E [(a · X + b − µy )2]

= a2 · σ2x

What if the function involves some linear combination of random
variables?
e.g. Let y = f (x1, x2) = a · x1 + b · x2

µy = a · µx1 + b · µx2
σ2y = a2 · σ2x1 + b2 · σ2x2 + 2ab · σx1x2

What if we have multiple outputs? Things get complicated and it
becomes helpful to introduce the...
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Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T ; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T ; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T

; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T ; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T ; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T ; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T ; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



Covariance Matrix

Assume we have two linear functions, producing two outputs from two
inputs,

y1 = ax1 + bx2

y2 = cx1 + dx2

We can introduce the vectors y = [y1, y2]T and x = [x1, x2]T ; The system
can now be represented in matrix notation,

y =

[
a b
c d

]
x

= Ax

It can easily be shown that,

µy = Aµx

COMP 6912 (MUN) Localization July 11, 2018 6 / 12



To talk about the uncertainty of the output, we must discuss uncertainty
in the input—which is given by σ2x1 , σ2x2 , and σx1x2

. First we organize these
values into a covariance matrix,

Σx =

[
σ2x1 σx1x2
σx1x2 σ2x2

]

(Note that the symbol Σ will be used to represent covariance matrices. It
should be clear from the context whether a covariance matrix or a
summation operator is intended.)

We now want to know Σy for our system; It turns out that this is given by,

Σy = AΣxA
T

which is valid whenever y is a linear function of x (i.e. y = Ax)
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For a larger system, the covariance matrix looks like this

Σx =


σ2x1 σx1,x2 · · · σx1,xn
σx2,x1 σ2x2 · · · σx2,xn

...
...

...
σxn,x1 σxn,x2 · · · σ2xn



The formal definition of a covariance matrix is equivalent to the definition
of covariance extended to vectors,

Σ = E
[
(x − E [x ])(x − E [x ])T

]

Covariance matrices have a number of special properties: square,
symmetric, positive semidefinite
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The Multivariate Normal Distribution

We are all now familiar with the definition of a 1-D Normal p.d.f.

p(x) =
(
2πσ2

)− 1
2 exp

{
−1

2

(x − µ)2

σ2

}

If x is a n-dimensional vector then the multivariate Normal p.d.f. is

p(x) = det (2πΣ)−
1
2 exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}

The mean µ is now a vector of size n

The variance σ2 is now the covariance matrix Σ, which is a square
matrix of size n × n
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The following is a 2-D normal distribution with µ = [0, 0]T and

Σ =

[
0.9 0.4
0.4 0.3

]
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Consider again the definition of the multivariate Normal,

p(x) = det (2πΣ)−
1
2 exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}

For some values of x we get the same probability; In particular, when the
expression (x − µ)TΣ−1(x − µ) is constant we get a curve of constant
probability; What curve? Define a constant c2 as follows (shown in 2-D
but works in higher dimensions as well),

[x1, y1]

[
a b
b d

] [
x1
y1

]
= c2

where [x1, y1]T = (x − µ) and the matrix in the middle is Σ−1. This can
be expanded to obtain,

ax21 + 2bx1y1 + dy21 = c2

which is the equation of an ellipse.
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It can be shown that the probability of a value falling within the ellipse is
1 − α, where α comes from χ2(α) = c2 and χ2(α) is the upper (100α)th
percentile of a χ2 distribution.

An ellipse with α = 0.1 is known as a 90% confidence ellipse,
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