Supplementary Material:
The Rolling and Sliding Constraints

Computer Science 4766/6912

Department of Computer Science
Memorial University of Newfoundland

May 18, 2018
We derive here the rolling and sliding constraints for a fixed standard wheel.
The Rolling Constraint

We derive here the rolling and sliding constraints for a fixed standard wheel; First the rolling constraint...
We derive here the rolling and sliding constraints for a fixed standard wheel; First the rolling constraint...

- We wish to express the following more formally,
We derive here the rolling and sliding constraints for a fixed standard wheel; First the rolling constraint...

- We wish to express the following more formally,
 - Component of motion in wheel direction $=$ Roll speed

\[\text{Roll speed} = r \dot{\phi} \]
We derive here the rolling and sliding constraints for a fixed standard wheel; First the rolling constraint...

- We wish to express the following more formally,
 - Component of motion in wheel direction = Roll speed
 - “Roll speed” comes from differentiating “roll position” w.r.t. time
The Rolling Constraint

We derive here the rolling and sliding constraints for a fixed standard wheel; First the rolling constraint...

- We wish to express the following more formally,
 - Component of motion in wheel direction = Roll speed
- “Roll speed” comes from differentiating “roll position” w.r.t. time
 - Wheel radius, r; rotation, ϕ
The Rolling Constraint

We derive here the rolling and sliding constraints for a fixed standard wheel; First the rolling constraint...

- We wish to express the following more formally,
 - Component of motion in wheel direction = Roll speed
- “Roll speed” comes from differentiating “roll position” w.r.t. time
 - Wheel radius, r; rotation, ϕ
 - Roll position $= r\phi$
The Rolling Constraint

We derive here the rolling and sliding constraints for a fixed standard wheel; First the rolling constraint...

- We wish to express the following more formally,
 - Component of motion in wheel direction = Roll speed
- “Roll speed” comes from differentiating “roll position” w.r.t. time
 - Wheel radius, r; rotation, ϕ
 - Roll position $= r\phi$
 - Roll speed $= r\dot{\phi}$
“Component of \textbf{motion} in wheel direction”?

- First of all, what motion are we referring to?
“Component of \textbf{motion} in wheel direction”?

- First of all, what motion are we referring to?
- $\dot{\xi}_I$, the motion of the robot in the global ref. frame?
“Component of motion in wheel direction”?

- First of all, what motion are we referring to?
- \(\dot{\xi}_I \), the motion of the robot in the global ref. frame?
- \(\dot{\xi}_R \), the motion of the robot in the robot ref. frame?

\[
\text{The Wheel } w_I = \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix}
\]
“Component of motion in wheel direction”?

- First of all, what motion are we referring to?
- \(\dot{\xi}_I \), the motion of the robot in the global ref. frame?
- \(\dot{\xi}_R \), the motion of the robot in the robot ref. frame?
- No — we need the motion of the wheel itself in the robot ref. frame.
“Component of motion in wheel direction”?

- First of all, what motion are we referring to?
- $\dot{\xi}_I$, the motion of the robot in the global ref. frame?
- $\dot{\xi}_R$, the motion of the robot in the robot ref. frame?
- No — we need the motion of the wheel itself in the robot ref. frame.
- First, express the position of the wheel in the global ref. frame: \mathbf{w}_I
“Component of motion in wheel direction”?

- First of all, what motion are we referring to?
- $\dot{\xi}_I$, the motion of the robot in the global ref. frame?
- $\dot{\xi}_R$, the motion of the robot in the robot ref. frame?
- No — we need the motion of the wheel itself in the robot ref. frame
- First, express the position of the wheel in the global ref. frame: w_I
“Component of **motion** in wheel direction”?

- First of all, what motion are we referring to?
 - $\dot{\xi}_I$, the motion of the robot in the global ref. frame?
 - $\dot{\xi}_R$, the motion of the robot in the robot ref. frame?
- No — we need the motion of the wheel itself in the robot ref. frame
- First, express the position of the wheel in the global ref. frame: w_I
“Component of motion in wheel direction”?

- First of all, what motion are we referring to?
- $\dot{\xi}_I$, the motion of the robot in the global ref. frame?
- $\dot{\xi}_R$, the motion of the robot in the robot ref. frame?
- No — we need the motion of the wheel itself in the robot ref. frame
- First, express the position of the wheel in the global ref. frame: \mathbf{w}_I

$$\mathbf{w}_I = \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix}$$
Next we differentiate the position of the wheel to obtain the wheel motion,
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\mathbf{w}_I = \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix}
\]
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\begin{align*}
\mathbf{w}_I &= \begin{bmatrix}
x + l \cos(\theta + \alpha) \\
y + l \sin(\theta + \alpha)
\end{bmatrix} \\
\dot{\mathbf{w}}_I &= \begin{bmatrix}
\dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\
\dot{y} + l \dot{\theta} \cos(\theta + \alpha)
\end{bmatrix}
\end{align*}
\]
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\begin{align*}
\mathbf{w}_I &= \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix} \\
\mathbf{\dot{w}}_I &= \begin{bmatrix} \dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\ \dot{y} + l \dot{\theta} \cos(\theta + \alpha) \end{bmatrix}
\end{align*}
\]

We will need the motion of the wheel in the robot ref. frame,
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\mathbf{w}_I = \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix}
\]

\[
\dot{\mathbf{w}}_I = \begin{bmatrix} \dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\ \dot{y} + l \dot{\theta} \cos(\theta + \alpha) \end{bmatrix}
\]

We will need the motion of the wheel in the robot ref. frame,

\[
\dot{\mathbf{w}}_R = R(\theta) \dot{\mathbf{w}}_I
\]
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\begin{align*}
\mathbf{w}_I &= \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix} \\
\dot{\mathbf{w}}_I &= \begin{bmatrix} \dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\ \dot{y} + l \dot{\theta} \cos(\theta + \alpha) \end{bmatrix}
\end{align*}
\]

We will need the motion of the wheel in the robot ref. frame,

\[
\begin{align*}
\dot{\mathbf{w}}_R &= R(\theta) \dot{\mathbf{w}}_I \\
\dot{\dot{\mathbf{w}}}_R &= R(\theta) \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + R(\theta) l \dot{\theta} \begin{bmatrix} -\sin(\theta + \alpha) \\ \cos(\theta + \alpha) \end{bmatrix}
\end{align*}
\]
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\begin{align*}
 \mathbf{w}_I &= \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix} \\
 \dot{\mathbf{w}}_I &= \begin{bmatrix} \dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\ \dot{y} + l \dot{\theta} \cos(\theta + \alpha) \end{bmatrix}
\end{align*}
\]

We will need the motion of the wheel in the robot ref. frame,

\[
\begin{align*}
 \dot{\mathbf{w}}_R &= R(\theta) \dot{\mathbf{w}}_I \\
 \dot{\mathbf{w}}_R &= R(\theta) \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + R(\theta) l \dot{\theta} \begin{bmatrix} -\sin(\theta + \alpha) \\ \cos(\theta + \alpha) \end{bmatrix} \\
 \dot{\mathbf{w}}_R &= \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \end{bmatrix} + l \dot{\theta} \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix}
\end{align*}
\]
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\begin{align*}
\mathbf{w}_I &= \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix} \\
\dot{\mathbf{w}}_I &= \begin{bmatrix} \dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\ \dot{y} + l \dot{\theta} \cos(\theta + \alpha) \end{bmatrix}
\end{align*}
\]

We will need the motion of the wheel in the robot ref. frame,

\[
\begin{align*}
\dot{\mathbf{w}}_R &= R(\theta) \dot{\mathbf{w}}_I \\
\ddot{\mathbf{w}}_R &= R(\theta) \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + R(\theta) \dot{l} \dot{\theta} \begin{bmatrix} -\sin(\theta + \alpha) \\ \cos(\theta + \alpha) \end{bmatrix} \\
\dddot{\mathbf{w}}_R &= \begin{bmatrix} \ddot{x}_R \\ \ddot{y}_R \end{bmatrix} + l \ddot{\theta} \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} \\
&= \mathbf{t} + \mathbf{r}
\end{align*}
\]
Next we differentiate the position of the wheel to obtain the wheel motion,

\[
\begin{align*}
\mathbf{w}_I &= \begin{bmatrix}
x + l \cos(\theta + \alpha) \\
y + l \sin(\theta + \alpha)
\end{bmatrix} \\
\dot{\mathbf{w}}_I &= \begin{bmatrix}
\dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\
\dot{y} + l \dot{\theta} \cos(\theta + \alpha)
\end{bmatrix}
\end{align*}
\]

We will need the motion of the wheel in the robot ref. frame,

\[
\begin{align*}
\dot{\mathbf{w}}_R &= R(\theta) \dot{\mathbf{w}}_I \\
\dot{\mathbf{w}}_R &= R(\theta) \begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix} + R(\theta) l \dot{\theta} \begin{bmatrix}
-\sin(\theta + \alpha) \\
\cos(\theta + \alpha)
\end{bmatrix} \\
\dot{\mathbf{w}}_R &= \begin{bmatrix}
\dot{x}_R \\
\dot{y}_R
\end{bmatrix} + l \dot{\theta} \begin{bmatrix}
-\sin \alpha \\
\cos \alpha
\end{bmatrix} \\
&= \mathbf{t} + \mathbf{r}
\end{align*}
\]

where \(\mathbf{t} = [\dot{x}_R, \dot{y}_R]^T \) represents the motion of the wheel due to translation of the robot.
Next we differentiate the position of the wheel to obtain the wheel motion,

$$\mathbf{w}_I = \begin{bmatrix} x + l \cos(\theta + \alpha) \\ y + l \sin(\theta + \alpha) \end{bmatrix}$$

$$\dot{\mathbf{w}}_I = \begin{bmatrix} \dot{x} - l \dot{\theta} \sin(\theta + \alpha) \\ \dot{y} + l \dot{\theta} \cos(\theta + \alpha) \end{bmatrix}$$

We will need the motion of the wheel in the robot ref. frame,

$$\dot{\mathbf{w}}_R = R(\theta) \dot{\mathbf{w}}_I$$

$$\dot{\mathbf{w}}_R = R(\theta) \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + R(\theta) l \dot{\theta} \begin{bmatrix} - \sin(\theta + \alpha) \\ \cos(\theta + \alpha) \end{bmatrix}$$

$$\dot{\mathbf{w}}_R = \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \end{bmatrix} + l \dot{\theta} \begin{bmatrix} - \sin \alpha \\ \cos \alpha \end{bmatrix} = \mathbf{t} + \mathbf{r}$$

where $\mathbf{t} = [\dot{x}_R, \dot{y}_R]^T$ represents the motion of the wheel due to translation of the robot and $\mathbf{r} = l \dot{\theta} [-\sin \alpha, \cos \alpha]^T$ represents the motion due to the robot's rotation.
\[
\begin{align*}
\dot{\mathbf{w}}_R &= \left[\begin{array}{c} \dot{x}_R \\ \dot{y}_R \end{array} \right] + l \dot{\theta} \left[\begin{array}{c} -\sin \alpha \\ \cos \alpha \end{array} \right] \\
&= \mathbf{t} + \mathbf{r}
\end{align*}
\]
\[
\begin{align*}
\dot{w}_R &= \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \end{bmatrix} + l\dot{\theta} \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} \\
&= t + r
\end{align*}
\]

The wheel’s forward direction is expressed by the unit vector \(\mathbf{v} \).
\[\dot{w}_R = \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \end{bmatrix} + l \dot{\theta} \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} = t + r \]

The wheel’s forward direction is expressed by the unit vector \(v \).
\[
\dot{\mathbf{w}}_R = \begin{bmatrix}
\dot{x}_R \\
\dot{y}_R
\end{bmatrix} + l\dot{\theta} \begin{bmatrix} -\sin \alpha \\
\cos \alpha
\end{bmatrix} = \mathbf{t} + \mathbf{r}
\]

The wheel’s forward direction is expressed by the unit vector \(\mathbf{v} \)

Note that \(\mathbf{r} \) points orthogonally to the line from \(P \) to the wheel (why?)
\[\dot{w}_R = \begin{bmatrix} x_R' \\ y_R' \end{bmatrix} + l\dot{\theta} \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} = t + r \]

The wheel’s forward direction is expressed by the unit vector \(\mathbf{v} \)

Note that \(r \) points orthogonally to the line from \(P \) to the wheel (why?); \(t \) could point in any direction
\[\dot{\omega}_R = \begin{bmatrix} \dot{x}_R \\ \dot{y}_R \end{bmatrix} + l\dot{\theta} \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} = \mathbf{t} + \mathbf{r} \]

The wheel’s forward direction is expressed by the unit vector \(\mathbf{v} \)

Note that \(\mathbf{r} \) points orthogonally to the line from \(P \) to the wheel (why?); \(\mathbf{t} \) could point in any direction.
Finally, the “component of motion in the wheel direction” is obtained...
Finally, the “component of motion in the wheel direction” is obtained... by taking the dot product of $\dot{w}_R = t + r$ with v...
Finally, the “component of motion in the wheel direction” is obtained... by taking the dot product of $\dot{w}_R = t + r$ with v...

COVERED ON BOARD

Requires the trigonometric identities:

1. \[
\sin(x + y) = \sin x \cos y + \cos x \sin y \]
2. \[
\cos(x + y) = \cos x \cos y - \sin x \sin y \]

Finally, the “component of motion in the wheel direction” is obtained... by taking the dot product of $\dot{w}_R = t + r$ with v...

COVERED ON BOARD

Requires the trigonometric identities:

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$
Finally, the “component of motion in the wheel direction” is obtained... by taking the dot product of $\mathbf{w}_R = t + r$ with \mathbf{v}...

COVERED ON BOARD

Requires the trigonometric identities:

\[
\begin{align*}
\sin(x + y) &= \sin x \cos y + \cos x \sin y \\
\cos(x + y) &= \cos x \cos y - \sin x \sin y
\end{align*}
\]
Finally, the “component of motion in the wheel direction” is obtained... by taking the dot product of $\dot{w}_R = t + r$ with v...

COVERED ON BOARD

Requires the trigonometric identities:

\[
\sin(x + y) = \sin x \cos y + \cos x \sin y \\
\cos(x + y) = \cos x \cos y - \sin x \sin y
\]
The Sliding Constraint

- We now wish to express the following more formally,

\[\text{Component of motion orthogonal to wheel direction} = 0 \]

The derivation is quite similar to that of the rolling constraint, with the following change:

For the rolling constraint we had

\[v \cdot (r + t) = r \dot{\phi} \]

Replace \(v \) with \(n \), orthogonal to \(v \); Replace \(r \dot{\phi} \) with 0

Expanding \(n \cdot (r + t) = 0 \) we arrive at the sliding constraint in its final form

\[\cos(\alpha + \beta) \sin(\alpha + \beta) l \sin \beta R(\theta) \dot{\xi} = 0 \]
We now wish to express the following more formally,

- Component of motion orthogonal to wheel direction = 0

The derivation is quite similar to that of the rolling constraint, with the following change:

For the rolling constraint we had

\[v \cdot (r + t) = r \dot{\varphi} \]

Replace \(v \) with \(n \), orthogonal to \(v \); Replace \(r \dot{\varphi} \) with 0

Expanding \(n \cdot (r + t) = 0 \) we arrive at the sliding constraint in its final form

\[\cos(\alpha + \beta) \sin(\alpha + \beta) l \sin \beta \]

\[R(\theta) \dot{\xi} = 0 \]
We now wish to express the following more formally,

- Component of motion orthogonal to wheel direction $= 0$

The derivation is quite similar to that of the rolling constraint, with the following change:

For the rolling constraint, we had $v \cdot (r + t) = r \dot{\phi}$

Replace v with n, orthogonal to v; Replace $r \dot{\phi}$ with 0

Expanding $n \cdot (r + t) = 0$ we arrive at the sliding constraint in its final form:

$$\begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ \sin \beta \end{bmatrix} R(\theta) \dot{\xi}_I = 0$$
We now wish to express the following more formally,
- Component of motion orthogonal to wheel direction = 0
- The derivation is quite similar to that of the rolling constraint, with the following change:
We now wish to express the following more formally,
- Component of motion orthogonal to wheel direction = 0

The derivation is quite similar to that of the rolling constraint, with the following change:
- For the rolling constraint we had \(\mathbf{v} \cdot (\mathbf{r} + \mathbf{t}) = r\dot{\phi} \)

Expanding \(\mathbf{n} \cdot (\mathbf{r} + \mathbf{t}) = 0 \) we arrive at the sliding constraint in its final form:

\[
\begin{align*}
\cos(\alpha + \beta) \sin(\alpha + \beta) l \sin\beta R(\theta) \dot{\xi} = 0
\end{align*}
\]
The Sliding Constraint

- We now wish to express the following more formally,
 - Component of motion orthogonal to wheel direction $= 0$
- The derivation is quite similar to that of the rolling constraint, with the following change:
 - For the rolling constraint we had $\mathbf{v} \cdot (\mathbf{r} + \mathbf{t}) = r \dot{\phi}$
 - Replace \mathbf{v} with \mathbf{n}, orthogonal to \mathbf{v}
We now wish to express the following more formally,
- Component of motion orthogonal to wheel direction = 0

The derivation is quite similar to that of the rolling constraint, with the following change:
- For the rolling constraint we had \(\mathbf{v} \cdot (\mathbf{r} + \mathbf{t}) = r\phi \)
- Replace \(\mathbf{v} \) with \(\mathbf{n} \), orthogonal to \(\mathbf{v} \)
We now wish to express the following more formally,

- Component of motion orthogonal to wheel direction = 0

The derivation is quite similar to that of the rolling constraint, with the following change:

- For the rolling constraint we had \(\mathbf{v} \cdot (\mathbf{r} + \mathbf{t}) = r\dot{\phi} \)
- Replace \(\mathbf{v} \) with \(\mathbf{n} \), orthogonal to \(\mathbf{v} \); Replace \(r\dot{\phi} \) with 0
We now wish to express the following more formally,
- Component of motion orthogonal to wheel direction = 0

The derivation is quite similar to that of the rolling constraint, with the following change:
- For the rolling constraint we had \(\mathbf{v} \cdot (\mathbf{r} + \mathbf{t}) = r \dot{\phi} \)
- Replace \(\mathbf{v} \) with \(\mathbf{n} \), orthogonal to \(\mathbf{v} \); Replace \(r \dot{\phi} \) with 0

Expanding \(\mathbf{n} \cdot (\mathbf{r} + \mathbf{t}) = 0 \) we arrive at the sliding constraint in its final form
\[
\cos(\alpha + \beta) \sin(\alpha + \beta) l \sin \beta \mathbf{R}(\theta) \dot{\xi} \mathbf{I} = 0
\]
We now wish to express the following more formally,

- Component of motion orthogonal to wheel direction = 0

The derivation is quite similar to that of the rolling constraint, with the following change:

- For the rolling constraint we had $\mathbf{v} \cdot (\mathbf{r} + \mathbf{t}) = r\dot{\phi}$
- Replace \mathbf{v} with \mathbf{n}, orthogonal to \mathbf{v}; Replace $r\dot{\phi}$ with 0

Expanding $\mathbf{n} \cdot (\mathbf{r} + \mathbf{t}) = 0$ we arrive at the sliding constraint in its final form
We now wish to express the following more formally,

- Component of motion orthogonal to wheel direction = 0

The derivation is quite similar to that of the rolling constraint, with the following change:

- For the rolling constraint we had \(\mathbf{v} \cdot (\mathbf{r} + \mathbf{t}) = r \dot{\phi} \)
- Replace \(\mathbf{v} \) with \(\mathbf{n} \), orthogonal to \(\mathbf{v} \); Replace \(r \dot{\phi} \) with 0

Expanding \(\mathbf{n} \cdot (\mathbf{r} + \mathbf{t}) = 0 \) we arrive at the sliding constraint in its final form

\[
[\cos(\alpha + \beta) \sin(\alpha + \beta) \ l \sin \beta] \ R(\theta) \hat{\xi}_1 = 0
\]