
COMP 2718: Shell Scripts: Part 4

By: Dr. Andrew Vardy

Outline

I More Tricks with Arguments
I shift - Shifting In Arguments
I Passing Arguments Along

More Tricks with Arguments

We have seen how scripts can use the parameters $1, $2 and so on
to access command-line arguments. For example:

--
echo "First 4 args:" $1 $2 $3 $4
echo "\$0:" $0
echo "Number of args:" $#
--

This script introduces two new special variables. $0 is set to the
pathname of the script itself. $# is the number of arguments.

$ echo_args.sh alpha beta gamma delta epsilon
First 4 args: alpha beta gamma delta
$0: ./echo_args.sh
Number of args: 5

shift - Shifting In Arguments
If many arguments are passed in, it is sometimes useful to step
through them one-by-one. This can be done by using shift which
moves the arguments “downwards”. For example, if a script is called
as follows:

$ script_name alpha beta gamma 12

Initially the parameters are as follows:

$1: alpha $2: beta $3: gamma $4: 12
$#: 4

After shift is called we have the following:

$1: beta $2: gamma $3: 12 $4:
$#: 3

--
echo "First 4 args:" $1 $2 $3 $4
echo "Number of args:" $#
shift
echo -e "\nFirst 4 args:" $1 $2 $3 $4
echo "Number of args:" $#
--

$./shift.sh alpha beta gamma delta epsilon
First 4 args: alpha beta gamma delta
Number of args: 5

First 4 args: beta gamma delta epsilon
Number of args: 4

shift can be useful for processing command-line options.

Process options for the fictional command:
fic-options.sh [-r] [-i] [-w word]
while (($# > 0)); do

option=$1
if ["$option" == "-r"]; then

echo "-r option"
fi
if ["$option" == "-i"]; then

echo "-i option"
fi
if ["$option" == "-w"]; then

Requires an additional word
shift
echo "-w option with word =" $1

fi
shift

done

Passing Arguments Along

Sometimes it is useful to pass along the whole list of arguments to
another program, or perhaps a function. The special parameter $@
can be used for this. There is another special parameter $! that
achieves a similar result:

In general, you are advised to use "$@" as it preserves individual
arguments with embedded spaces.

The following example script provides a wrapper around any
operation (in this case ping). It creates and adds a message to a
logfile every time it is executed. Meanwhile, it passes along all
command-line arguments to ping.

Generic shell wrapper that performs an operation
and creates a log file describing it.

Set the following two variables.
OPERATION=ping
LOGFILE=logfile.txt

Log it.
echo "$(date) + $OPERATION "$@"" >> $LOGFILE
Now, do it.
exec $OPERATION "$@"
